Dit seminarieproject voor leerlingen van een vijfde jaar start met een overzicht van verschillende projectiesystemen van driedimensionale lichamen op een vlak. We gebruiken het (vlakke) meetkundeprogramma Cinderella om eenvoudige lichamen zoals kubussen en octaeders in een evenwijdig perspectief te tekenen. De hoekpunten van deze lichamen hebben immers gekende coöordinaten. Daarna breiden we het assortiment lichamen uit naar platonische lichamen met een vijfhoekige symmetrie. Afknottingen van deze lichamen lenen zich goed tot het maken van animaties. Tot slot maken we afbeeldingen in een tollende perspectief. Hierbij wordt aandacht besteed aan het gebruik van eulerhoeken en aan het algoritme voor de zichtbaarheid van zijvlakken.
Linear regression is one of the most widely used statistical methods available today. It is used by data analysts and students in almost every discipline. However, for the standard ordinary least squares method, there are several strong assumptions made about data that is often not true in real world data sets. This can cause numerous problems in the least squares model. One of the most common issues is a model overfitting the data. Ridge Regression and LASSO are two methods used to create a better and more accurate model. I will discuss how overfitting arises in least squares models and the reasoning for using Ridge Regression and LASSO include analysis of real world example data and compare these methods with OLS and each other to further infer the benefits and drawbacks of each method.
Under a partly linear model we study a family of robust estimates for the regression parameter and the regression function when some of the predictors take values on a Riemannian manifold. We obtain the consistency and the asymptotic normality of the proposed estimators. Simulations and an application to a real dataset show the good performance of our proposal under small samples and contamination.
This is a set of notes for the first two chapters of an Abstract Algebra course, following the Hungerford textbook table of contents.
One notable feature is the use of a couple of commands that allow one to show only definitions, or only the examples, etc., and another command that allows one to format examples for making handouts.
In this we examine the concept of the dimension of fractals, extending the idea of integer dimension to fractals, which we define and investigate here in. Moving on we consider the Minkowski dimension, sometimes referred to as the "box dimension", of a fractal. We then continue to define and examine another type of dimension; the Hausdorff dimension. We then investigate under what conditions these are equal finally moving on to prove Hutchinsons Theorem,