Gallery Items tagged Math

AMATH582 homework template
Homework template for UW AMATH 582 Winter Quarter 2020
Kelsey Maass

Seminario_trans_fourier
Based on a guest lecture at Instituto Superior Técnico (University of Lisbon), I use calculus and abstract algebra to derive the Fourier Tranform using the Fourier Series.
Sara Martins Bonito

Project Report Template
Project report template for mathematics courses at the Manchester Metropolitan University.
Jon Shiach

Hecke groups, linear recurrences and Kepler limits (update 2)
Computations with the the objects mentioned in the title.
Barry Brent

Template "Les Techniques de l'Ingénieur"
This is a template for submitting a contribution to the French Technical Encyclopedia "Les Techniques de l'Ingénieur"
Sébastien BRIOT

CPSC 542F Notes
My documentation report
Objetive: Keep track of the notes taken in convex analysis course.
Jasmine Hao

Is e + $\pi$ irrational?
In mathematics, a rational number is any number that can be expressed as the quotient
or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q
may be equal to 1, every integer is a rational number. The set of all rational numbers,
often referred to as ”the rationals”, is usually denoted by a boldface Q (or blackboard
bold , Unicode ); it was thus denoted in 1895 by Giuseppe Peano after quoziente, Italian
for ”quotient”. The decimal expansion of a rational number always either terminates
after a finite number of digits or begins to repeat the same finite sequence of digits over
and over. Moreover, any repeating or terminating decimal represents a rational number.
These statements hold true not just for base 10, but also for any other integer base (e.g.
binary, hexadecimal). A real number that is not rational is called irrational. Irrational
numbers include √2, , e, and . The decimal expansion of an irrational number continues
without repeating. Since the set of rational numbers is countable, and the set of real
numbers is uncountable, almost allreal numbers are irrational.
jackson

Deall y Deilliad
This is the Welsh version of the template for Cardiff University Computing for Mathematics individual coursework
Vince

Moiré-effect
Voor seminarie kregen wij de opdracht een moirépatroon op bestelling te maken. We moesten aanvankelijk het niveaulijnpatroon vinden waarvan de glanskrommen afgeronde vierkanten voorstellen. Gezien we hier vrij snel in geslaagd waren, hebben we de opdracht uitgebreid. Ons uiteindelijke doel werd het maken van vier moirépatronen, met name de vier symbolen van het kaartspel. In dit verslag staat stap voor stap uitgeschreven hoe we tot dit resultaat zijn gekomen, van functies met twee variabelen tot het uiteindelijke plotten van de moirépatronen met het computeralgebrapakket Sage.
Van den Broeck Luc