CHEM 446-337 HW Template
Author
Shane M. Parker
Last Updated
5年前
License
Creative Commons CC BY 4.0
Abstract
Simple template for writing and submitting homework.
Simple template for writing and submitting homework.
\documentclass[12pt,letterpaper]{article}
\usepackage{fullpage}
\usepackage[top=2cm, bottom=4.5cm, left=2.5cm, right=2.5cm]{geometry}
\usepackage{amsmath,amsthm,amsfonts,amssymb,amscd}
\usepackage{lastpage}
\usepackage{enumerate}
\usepackage{fancyhdr}
\usepackage{mathrsfs}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{listings}
\usepackage{hyperref}
\usepackage{txfonts}
\usepackage{titlesec}
\hypersetup{%
colorlinks=true,
linkcolor=blue,
linkbordercolor={0 0 1}
}
% Edit these as appropriate
\newcommand\course{CHEM 446/337}
\newcommand\hwnumber{1} % <-- homework number
\newcommand\MyName{Gilbert Gottfried} % <-- Your Name
\newcommand\MyID{gxg123} % <-- Your NetworkID
\renewcommand\lstlistingname{Algorithm}
\renewcommand\lstlistlistingname{Algorithms}
\def\lstlistingautorefname{Alg.}
\setlength{\parindent}{0.0in}
\setlength{\parskip}{0.05in}
\titleformat{\section}{\normalfont\bfseries}{Problem \thesection:}{1em}{}
\titleformat{\subsection}{\normalfont}{\thesubsection)}{2em}{}
\pagestyle{fancyplain}
\headheight 35pt
\lhead{\MyName{} (\MyID)}
\chead{\textbf{Homework \hwnumber}}
\rhead{\course \\ \today}
\lfoot{}
\cfoot{}
\rfoot{\small\thepage}
\headsep 1.5em
\begin{document}
% Start solutions here
\section{Integrals}
\subsection{Gaussian}
\begin{equation}
\int_{-\infty}^{\infty} dx e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}}
\end{equation}
\subsection{Trig functions}
Use \verb|\begin{align*}...\end{align}| for derivations.
\begin{align*}
\int_0^\pi \cos(x) \cos(3x) dx & = \\
& = \int_0^\pi \frac{1}{2}\left(\cos(4x) + \cos(2x)\right) dx \\
& = \frac{1}{2(4}\sin(4x)\Big|^\pi_0 + \frac{1}{2(2)}\sin(2x)\Big|^\pi_0 \\
& = 0
\end{align*}
\section{Linear Algebra}
\begin{equation}
\mathbf{H} = \begin{pmatrix}
E_0 & V \\
V & E_1
\end{pmatrix}
\end{equation}
\section{Quantum Mechanics}
\begin{equation}
\hat{H}|\Psi(t)\rangle = i \frac{\partial}{\partial t}|\Psi(t)\rangle
\end{equation}
\end{document}