\documentclass[12 pt]{article}        	  %sets the font to 12 pt and says this is an article (as opposed to book or other documents)
\usepackage{amsfonts, amssymb, amsmath}	  % packages to get the fonts, symbols used in most math
  
%\usepackage{setspace}               	% Together with \doublespacing below allows for doublespacing of the document
\oddsidemargin=-0.5cm                 	% These three commands create the margins required for class
\setlength{\textwidth}{6.5in}         	%
\addtolength{\voffset}{-20pt}        	%
\addtolength{\headsep}{25pt}           	%
\pagestyle{myheadings}                           	% tells LaTeX to allow you to enter information in the heading
\markright{Murphy Waggoner\hfill \today \hfill} 	% put your name instead of Murphy Waggoner 
                                                	% LaTeX will put your name on the left, the date the paper 
                                                	% is generated in the middle 
                                                 	% and a page number on the right
\newcommand{\qed}[0]{$\square$}        	% make an unfilled square the default for ending a proof
%\doublespacing                         	% Together with the package setspace above allows for doublespacing of the document
\begin{document}												% end of preamble and beginning of text that will be printed
        											% makes the word Proposition and the proposition number bold face  
	\textbf{Proposition R.231:}							% the Proposition number from the book (this one is fictitious)
Prove that $A = \left\{m + n\sqrt{3}\ |\ m,n \in \mathbb{Z} \right\}$ is closed under multiplication.
                                   
																				% be sure to leave at least one blank line here so that 
																				% the Proof starts with a new paragraph
\textbf{Proof:}              						% makes the word Proof bold face
Let $A = \left\{m + n\sqrt{3}\ |\ m,n \in \mathbb{Z} \right\},$ 
and let $m + n\sqrt{3}$ and $p + q\sqrt{3}$ be elements of $A$.
See Figure \ref{truthtable} to see what a table looks like.  Then 
\begin{align}                                        %If you don't want page numbers, then use align* instead 
\left( m + n\sqrt{3} \right)\left(p + q\sqrt{3} \right) & =  mp + mq\sqrt{3} + np\sqrt{3}  + 3qn\\																			& =  (mp + 3qn) + (mq + np)\sqrt{3}.   
\end{align}
Since $m, n, p, q \in \mathbb{Z}$, $mp + 3nq$ and $ mq + np$ are both integers.  Therefore, 
$$\left( m + n\sqrt{3} \right)\left(p + q\sqrt{3}   \right) \in A,$$ 
and $A$ is closed under multiplication. \qed
\begin{figure}[!htbp]
	\centering
		\begin{tabular}{c|c|c}\hline
			$A$&$B$&If $A$ then $B$.\\ \hline
			True&True&\\ 	
			True&False&\\ 	
			False&True&\\ 	
			False&False&\\ \hline
			\end{tabular}
		\caption{ And here is a table inserted for no reason whatsover}
		\label{truthtable}
	\end{figure}
	
\end{document}