\documentclass[a0paper,portrait]{baposter}
\usepackage[utf8]{inputenc}
\usepackage[spanish,es-nosectiondot]{babel}
\usepackage[nooneline,hang]{caption} % Required for specifying captions to tables and figures
\usepackage{graphicx}
\setlength{\captionmargin}{0pt}
\usepackage{booktabs} % Horizontal rules in tables
\usepackage{relsize} % Used for making text smaller in some places
\usepackage[normalem]{ulem}
%\usepackage[authoryear]{natbib}
\graphicspath{{figures/}} % Directory in which figures are stored
\usepackage{graphicx}
\definecolor{bordercol}{RGB}{0,0,0} % Border color of content boxes
\definecolor{headercol1}{rgb}{0.63, 0.79, 0.95} % Background color for the header in the content boxes (left side)
\definecolor{headercol2}{rgb}{0.63, 0.79, 0.95} % Background color for the header in the content boxes (right side)
\definecolor{headerfontcol}{RGB}{0,0,0} % Text color for the header text in the content boxes
\definecolor{boxcolor}{RGB}{255,255,255} % Background color for the content in the content boxes
\definecolor{Gray}{RGB}{119,120,119} % Background color for the content in
\definecolor{BrickRed}{RGB}{0,21,96} % Background color for the content in
\usepackage{float}
\usepackage[fleqn]{amsmath}
\begin{document}
\renewcommand{\figurename}{Figure}
\background{ % Set the background to an image (background.pdf)
%\begin{tikzpicture}[remember picture,overlay]
%\draw (current page.north west)+(-2em,2em) node[anchor=north west]
%{\includegraphics[height=1.1\textheight]{background}};
%\end{tikzpicture}
}
\makeatletter
\long\def\emph#1{\ifmmode\nfss@text{\em #1}\else\hmode@bgroup\text@command{#1}\em\check@icl #1\check@icr\expandafter\egroup\fi}
\makeatother
\begin{poster}{
grid=false,
borderColor=bordercol, % Border color of content boxes
headerColorOne=headercol1, % Background color for the header in the content boxes (left side)
headerColorTwo=headercol2, % Background color for the header in the content boxes (right side)
headerFontColor=headerfontcol, % Text color for the header text in the content boxes
boxColorOne=boxcolor, % Background color for the content in the content boxes
headershape=roundedright, % Specify the rounded corner in the content box headers
%headerfont=\Large\sf\bf, % Font modifiers for the text in the content box headers
textborder=rectangle,
background=user,
headerborder=open, % Change to closed for a line under the content box headers
boxshade=plain,
headerheight=8cm, %ALTURA ENTRE EMAIL Y BOXES
columns=2
}
{}
%
%----------------------------------------------------------------------------------------
% TITLE AND AUTHOR NAME
%----------------------------------------------------------------------------------------
%
{\includegraphics[scale = 0.29]{encabezado_ia.jpg}}% University/lab logo
{
\vspace{-0.5cm}
{\textcolor{Gray}{\rule[0.0cm]{23.5cm}{0.05cm}}}
{\textcolor{BrickRed}{\Large \bf Evaluaci\'on de correlaciones para la determinaci\'on del coeficiente de transferencia de calor en flujo transversal en un solo tubo}}\\[-10pt]
%PERDIDA DE CARGA EN TUBOS DE UN INTERCAMBIADOR DE CALOR DE MULTIPLES PASOS
{\textcolor{Gray}{\rule[0.0cm]{23.5cm}{0.05cm}}}
% \author{Acosta, Jimena; Arguello, Melissa; De Baca, Juan Carlos; Fleitas, Jazmin; Rojas, Mariana; Romero, Rosa; Strubing Yazmin; Vera, Gast\'on
% \thanks{Profesores: Prof. Ing. Quim. Mario Smidt; Prof. Ing. Quim. Laura Barrios; Prof. Ing. Quim. Eduardo Sandoval}}
{\bf\vspace{0.4cm}\Large M. Smidt$^{1,2,*}$, J. Acosta$^{2}$, M. Arguello$^{2}$, J. De Baca$^{2}$, J. Fleitas$^{2}$, M. Rojas$^{2}$, R. Romero$^{2}$, Y. Strubing$^{2}$, G. Vera$^{2}$\\[5pt]% Author names
}
{\bf\large $^{1}$Prof. Asistente, $^{2}$Facultad de Ciencias Qu\'imicas -- Universidad Nacional de Asunci\'on\\[2pt]
*Contacto: \textcolor{blue}{msmidt@qui.una.py}}}\\
\hspace{5 pto}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Introducción
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{Introducción}{name=introduction,column=0,row=0}{
Los intercambiadores de flujo cruzado son com\'unmente
usados cuando es necesario transferir calor \cite{cengel}. \\
El movimiento altamente desordenado de los fluidos que,
en general, se tiene a altas velocidades se conoce como
turbulento. Lo com\'un es que el flujo de fluidos de baja
viscosidad, como el aire a altas velocidades, sea turbulento. El r\'egimen de flujo influye mucho en la potencia requerida para el bombeo \cite{incropera}.
El n\'umero de Nusselt puede ser obtenido con el uso de
las correlaciones, todas basadas en la condiciones globales
del r\'egimen del flujo en cual se realiza la operaci\'on, las correlaciones sirven para aproximar el valor del coeficiente de transferencia de calor en reg\'imenes determinados.
A modo de dar continuidad a las investigaciones de transferencia de calor en flujo transversal en un tubo, se plantea como objetivo comparar los valores de coeficiente de transferencia de calor, obtenidos utilizando las correlaciones de Hilper, Zhukauskas, Churchill y Bernstein, Whitaker, Eckert y Drake.\\
\emph{Palabras claves: Correlaciones, intercambiador de calor, coeficiente de transferencia de calor,turbulento.}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Metodología
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{Metodolog\'ia}{name=results1,column=0,row=0,below=introduction}{
El equipo utilizado es el intercambiador de calor de flujo transversal en un solo tubo H350. \cite{edibon}.
\begin{center}
\includegraphics[scale=0.40]{equipo.png}\\
\begin{footnotesize}
Figura 1. Intercambiador de flujo transversal\cite{edibon}.
\end{footnotesize}
\end{center}
Se realizaron 8 experimentos, las correlaciones utilizadas fueron:
\small
\begin{equation}\label{whitaker}
\textbf{Whitaker} \hspace{1 cm} Nu= (0.4Re^{0.5} + 0.06Re^{2/3}) Pr^{0.4} \left(\frac{\mu}{\mu_{p}}\right)
\end{equation}
\vspace{-0.4 cm}
\begin{equation}\label{ecker}
\textbf{Ecker y Drake} \hspace{1.5cm} Nu = (0.250Re^{0.6})Pr^{0.38} \left(\frac{Pr}{Pr_{p}}\right)
\end{equation}
\vspace{-0.4 cm}
\begin{equation}
\textbf{Hilper} \hspace{5 cm} Nu = CRe^{m}Pr^{\frac{1}{3}}
\end{equation}
\vspace{-0.6 cm}
\begin{equation}
\textbf{Churchill y Bernstein} \hspace{0.3 cm}
Nu = 0.3 + \frac{0.62Re^{\frac{1}{2}}Pr^{\frac{1}{3}}}{[1+(0.4Pr)^{\frac{2}{3}}]^{\frac{1}{4}}} \left[1+\left(\frac{Re}{282000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}
\end{equation}
\vspace{-0.5 cm}
\begin{equation}
\textbf{Zhukauskas} \hspace{3.5 cm} Nu= CRe^{m}Pr^{n} \left(\frac{Pr}{Pr_{s}} \right)^{\frac{1}{4}}
\end{equation}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Resultados
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{Resultados}{name=results2,column=1}{
\subsection*{\textbf{Resultados}}
\begin{center}
\includegraphics[scale=0.40]{Presentaci_n2.jpg}\\
\begin{footnotesize}
Figura 3. Comparaci\'on de los valores experimemtales de los coeficientes de transferencia de calor con los valores obtenidos mediante correlaciones.\\
\end{footnotesize}
\end{center}
\subsection*{\textbf{Análisis}}
En las correlaciones de Zhukauskas, Churchill, Whitaker y Hilpert se observa que se encuentran dentro del 20\% de aproximaci\'on a los valores experimentales. En cuanto a la correlaci\'on de Eckert se observa que se encuentra muy alejado del valor obtenido experimentalmente, esto se debe a que dicha correlaci\'on posee una restricci\'on de operaci\'on, la cual establece un rango de Reynolds que var\'ia de 10$^{3}$ hasta 10$^{5}$.
Con los datos obtenidos, la correlaci\'on de Zhukauskas proporciona una buena aproximaci\'on, que se ajusta con los valores experimentales, segui\'endole la correlaci\'on de Churchill, donde las medias a partir de la diferencia realizada con coeficientes de transferencia de calor para estas dos correlaciones y los valores experimentales fueron de 2,11 y 2,57 respectivamente.
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Conclusión
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{Conclusi\'on}{name=conclusion,column=1,below=results2}{
Se observ\'o que la correlaci\'on que m\'as se ajusta al coeficiente de transferencia de calor obtenido experimentalmente fue la obtenida mediante la correlaci \'on de Zhukauskas, seguida a \'esta la correlaci\'on Churchill. La correlaci\'on de Eckert y Drake fue la que present\'o mayor desviaci\'on del valor experimental.
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Referencia
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{Referencias}{name=references,column=1,below=conclusion}{
%\setlength{\bibsep}{1pt}
\smaller % Reduce the font size in this block
\renewcommand{\section}[2]{\vskip 0.05em}
\begin{thebibliography}{99}
%\begin{small}
\bibitem{cengel}
Yunus A.Cengel, AfshunJ. Ghajar. {\em Transferncia de Calor y masa}.
McGraw-Hill Book Co., USA, 7ma edici\'on, 2011
\bibitem{incropera}
Incropera, F. y DeWitt, D. {\em Fundamentos de Transferencia de
Calor}.Prentice-Hall.,Espa\~na, 4ta edici\'on, 1999.
\bibitem{edibon}
Edidon. {\em Manual experimental de operaci\'on y mantenimiento}.Espa\~na,
1998.
\bibitem{Holman}
Holman, J. P. {\em Transferencia de calor}.
McGraw-Hill., Espa\~na, 8va edici\'on,1998.
\bibitem{Kreith}
Kreith, F.; Manglik, R. M.; Bohn, M. S. {\em Principios de Transferencia de Calor}. Editec S.A. de C.V., 7ma edici\'on, 2012.
%\end{small}
\end{thebibliography}
}
\end{poster}
\end{document}