

TÍTULO DO PROJETO DO ESTUDANTE

PROJETO PROPG/UEL N° XXXXX - TÍTULO DO PROJETO CADASTRADO

ALUNO: NOME SOBRENOME1 SOBRENOME

ORIENTADOR: PROF. DR. NOME SOBRENOME1 SOBRENOME

TÍTULO DO PROJETO DO ESTUDANTE

RESUMO

Deve conter uma brevíssima justificativa do tema, objetivo geral, metodologia, principais resultados e conclusão. (até 1 página, incluindo palavras chaves e ODS). O espaçamento deve seguir o padrão utilizado no trabalho.

Palavras-chave: palavra 1; palavra 2; palavra 3; palavra 4; palavra 5 (mín 3, máx 5).

ODS: Quando aplicável, indicar em qual(is) dos 17 Objetivos de Desenvolvimento Sustentável o projeto se enquadra;

1 INTRODUÇÃO

Identificar e caracterizar o problema com apoio de literatura pertinente, evidenciar a relevância do estudo no contexto da área inserida, a importância do problema, as hipóteses e as propostas de solução;

1.1 IMPORTANTE - SOBRE O COMPILADOR DO OVERLEAF

Para que a fonte Arial funcione corretamente com os pacotes usados nesse template, é essencial manter o **XeLaTeX** como compilador.

2 OBJETIVOS

Descrever sucintamente o objetivo geral e também específicos, se for o caso.

3 METODOLOGIA

Descrever o local de realização e a metodologia empregada para a execução do projeto e como os objetivos serão alcançados.

Deverá constar o número de aprovação do Comitê/Comissão de Ética, caso envolva pesquisa com seres humanos (CEP) ou animais (CEUA); esta aprovação deverá fazer referência ao projeto de pesquisa do orientador cadastrado na PROPPG.

Deverá apresentar o registro junto ao Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado—SisGen, caso o projeto de IC envolva patrimônio genético ou o conhecimento tradicional associado.

4 RESULTADOS E DISCUSSÕES

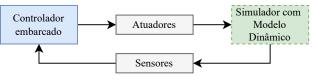
Apresentar os resultados obtidos com a execução do projeto. Pode se utilizar de figuras e tabelas para apresentação dos resultados. Discutir os resultados com base em literatura pertinente e enfatizar o avanço no conhecimento proporcionado pelo trabalho.

Os resultados também podem ser apresentados separadamente das discussões, a critério dos autores.

5 CONCLUSÕES

Apresentar de forma sucinta a(s) conclusão(s) do estudo, de forma coerente com o objetivo proposto e resultados apresentados.

Abaixo, por fim, como utilizar o template no latex.


5.1 USO DE FIGURAS E TABELAS

Figuras, tabelas e equações devem ser usadas seguindo o padrão ABNT. Os exemplos e instruções a seguir mostram como utilizar.

As figuras devem ser centralizadas e devem ser referenciadas por "Figura Y", com a letra F em maiúsculo. Sua legenda deve ser centralizada e localizada imediatamente acima da figura. Abaixo da figura deve ser colocado a fonte da imagem, e, caso seja de autoria do(s) autor(es), colocar "Fonte: Autoria própria.". Note que essa normalmente é colocada em um texto com fonte 1pt menor que a do texto normal, o que pode ser obtido utilizando o comando *small* (vide exemplo mostrado adiante).

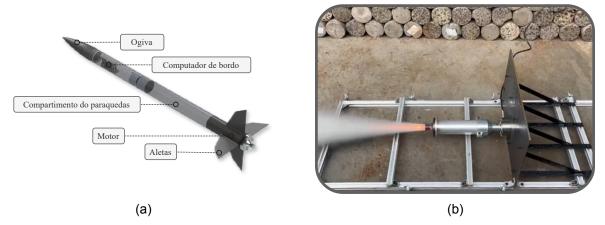

Finalmente, a Figura 1 mostra um exemplo genérico, considerando que a mesma foi retirada do trabalho de Ogata (2011). Já na Figura 2 mostra um exemplo com a utilização de *subfigure* para posicionar duas figuras lado a lado, enquanto que a fonte é de autoria própria.

Figura 1.: Diagrama genérico de uma simulação Hardware-in-the-Loop

Fonte: (Ogata, 2011).

Figura 2.: Representação de elementos do Projeto Vetor II. (a) Visão 3D renderizada do foguete experimental. (b) Bancada de testes do motor e propelente.

Fonte: Autoria própria.

De forma geral as regras aplicadas anteriormente as figuras serão utilizadas na chamada e descrição das tabelas. Assim, a legenda das tabela será imediatamente acima da mesma, enquanto que a fonte deverá ser inserida logo abaixo com fonte 1pt menor do que a normal. A tabela deve ser centralizada. Dito isso, a Tabela 1 mostra um exemplo de tabela que descreve as medidas de resistências obtidas em um multímetro de diversos resistores.

Por fim, para exemplificar mais um uso de tabela, a Tabela 2 mostra as medidas de tensão obtidas nos resistores de um circuito hipotético, os respectivos valores da potência dissipada em cada resistor e a potência total dissipada nos resistores. Note que a legenda da Tabela poderia citar o circuito, caso existisse uma figura do mesmo.

5.2 USO DE EQUAÇÕES

As equações sempre devem ser numeradas de forma consecutiva, com números entre parênteses encostados no lado direito da margem. Outro ponto é que todas as variáveis, caso não

Tabela 1.: Valores teóricos e medidos dos resistores no experimento de medição de resistência utilizando multímetros.

Resistor	Valor Teórico	Valor Medido	Erro Percentual
	(Ω)	(Ω)	(%)
$\overline{R_1}$	1200	1250	4,16
R_2	2200	2300	4,54
R_3	4700	4750	1,06
R_4	10000	9800	2,00
R_5	22000	23100	5,00

Fonte: Autoria própria.

Tabela 2.: Tensão medida nos resistores do circuito montado, mostrado na Figura Z, bem como os valores calculados da potêncica dissipada em cada elemento e o valor total dissipado.

Resistor	Valor (Ω)	Tensão Medida (V)	Potência Diss. (mW)
R_1	470	1, 25	3,32
R_2	520	0,82	1,29
R_3	10×10^3	4	1,60
R_4	22×10^3	10	4,54
R_5	4.7×10^3	2	0,85
Potência	11.60 mW		

Fonte: Autoria própria.

tenham sida abordadas ou explicadas anteriormente no texto, devem ser explicadas logo após a equação. Diferente de tabelas e figuras, equações são parte do texto corrido. Assim, a equação pode ser chamada manualmente ou colocada como continuação de um parágrafo. Abaixo exemplos disso.

A lei de ohm nos diz que a tensão em um resistor é dada pela multiplicação da sua resistência e da corrente elétrica sobre o mesmo, seguindo a relação de

$$V = RI, (1)$$

onde V é a tensão elétrica, em Volts, R é a resistência elétrica, em Ω , e I o valor da corrente elétrica, em A.

Note no exemplo anterior, que a equação faz parte do texto, havendo uma vírgula após a equação e com o texto na sequência sem iniciar um novo parágrafo. Já a outra forma de utilzir equação é chamar a equação pelo seu número e entre parênteses. Por exemplo, a equação (2) mostra a segunda lei de Ohm, que descreve a resistência do material R em ohms.

$$R = \frac{\rho L}{A},\tag{2}$$

 ρ a resistividade do material em $\frac{\Omega mm^2}{m}$, L o comprimento do material, em metro, e A a área da seção transversal, em mm 2 .

Note que equação é chamada com minúsculo. Para colocar o número em parênteses podese utilizar o comando *eqref*, como mostrado acima. Alternativamente isso pode ser feito de forma manual pelo comando *ref*. Por exemplo, as equações (1) e (2) mostram as leis de Ohm.

5.3 CITAÇÕES E REFERÊNCIAS BIBLIOGRÁFICAS

5.3.1 Criação das referências

Existem duas maneiras de utilizar referências bibliográficas no Latex. Utilizando arquivos bib e de forma manual usando bibitem.

A primeira permite maior flexibilidade visto que um arquivo no formato .bib possui as informações de cada referência inserida pelo usuário. Outro ponto que é que cada tipo de documento tem um tipo de citação, chamada pelo comando bibliographystyle em conjunto com o pacote utilizado. Assim, um arquivo .bib não precisa ser alterado caso o modelo utilizado seja um estilo e pacote diferente.

Devido a esse fator é importante seguir sempre o modelo e somente alterar caso haja realmente a necessidade. Por exemplo, esse *template* utiliza o pacote *natbib* com o estilo especificado no arquivo *.bst.* O usuário deve alterar apenas o arquivo *bibliografia.bib*, inserindo suas referências que posteriormente serão chamadas no texto.

Na hora de criar uma referência, você verá que existem três campos principais. O TIPO da citação (@book, @article, @phdthesis, @misc, @techreport, dentre outros), seguido do APE-LIDO, ou seja, como você irá chamar essa referência ao longo do seu código. Na sequência, virão todas as informações (as quais podem variar conforme o tipo de citação.

Por exemplo, nesse modelo, a primeira citação no arquivo disponibilizado como exemplo é a citação do livro do (Ogata, 2011). Verifique que o TIPO está como @book, o APELIDO como (Ogata, 2011) e na sequência as informações *title publisher*, *author*, *year* e *address*. Para auxiliar a criação, os seguintes sites possuem dicas úteis: vidaestudantil e ifsc-wiki.

O arquivo *.bib* trás alguns exemplos de livros (Ogata, 2011; Boylestad; Nashelsky, 2013; Coimbra, 1978), exemplos de relatórios técnicos (Clark, 1986), de datasheets (Texas Instruments, 1998), entre outros.

5.3.2 Chamada das referências

O template usa citações no model ABNT, com sobrenome e ano. Citações ainda podem ser diretas ou indiretas. No primeiro modo, as citações são parte do texto, como se a menção a elas fosse feita de forma direta. Nesse cenário deve-se usar o comando *textcite*. A segunda forma é quando a citação ocorre de forma indireta, ou seja, uma frase trás uma afirmação e você deseja indicar de onde essa informação veio. Nesse caso deve-se usar o comando *cite*.

Exemplo de frases na forma direta:

- Conforme mostrado por Boylestad e Nashelsky (2013), amplificadores operacionais possuem erros devido suas características construtivas.
- No estudo da teoria de controle temos o controle clássico ou o controle moderno, como discutido em Ogata (2011).
- Conforme o trabalho de Chang e Pakzad (2013), o tema é complexo e possui incertezas.

Da mesma forma, essas frases poderiam ser indiretas, como nos exemplos abaixo:

 Amplificadores operacionais possuem erros devido suas características construtivas (Boylestad; Nashelsky, 2013).

- O estudo da teoria de controle envolve o controle clássico e o controle moderno (Ogata, 2011).
- O amplificador operacional LM741 possui tensão nominal de trabalho de ± 15 V (Texas Instruments, 1998).
- O tema em questão é complexo e possui incertezas (Chang; Pakzad, 2013).

Por fim, é muito importante notar que TODA referências bibliográfica deve ser chamada no texto. Ou seja, adicionar uma referência no arquivo .bib não insere a mesma automaticamente na lista de referência. A referência só aparece quando ela é chamada ao menos uma vez utilizando os comandos cite ou textcite. Isso é uma regra para qualquer trabalho.

REFERÊNCIAS

BOYLESTAD, Robert L.; NASHELSKY, Louis. **Dispositivos Eletrônicos e Teoria dos Circuitos**. São Paulo: Pearson Universidades, 2013. 11ed.

CHANG, Minwoo; PAKZAD, Shamim N. Modified Natural Excitation Technique for Stochastic Modal Identification. **Journal of Structural Engineering**, v. 139, n. 10, p. 1753–1762, 2013. DOI: 10.1061/(ASCE)ST.1943-541X.0000559.

CLARK, J A. Private Communication. Ann Harbor, 1986.

COIMBRA, A L. **Lessons of Continuum Mechanics**. São Paulo, Brazil: Ed. Edgard Blücher, 1978. 428 p.

OGATA, Katsuhiko. **Engenharia de Controle moderno**. São Paulo: Pearson Prentice Hall, 2011. TEXAS INSTRUMENTS. **LM741 Operational Amplifier**. [S.I.: s.n.], mai. 1998. Datasheet.