

Your Title Your Title Your Title Your Title Your Title

Conference 2024

Your Institution

汇报人: 君の名は

2023.4.4

About the Author(分栏显示)

LinaBell

Research Fellow in Nanjing University, a member of LAMDA.

Latest works

- NeurPIS
- ICML
- ICRL
- TPAMI
- PRML

3 Methodology

4 Analyses

6 Experiments

6 Conclusion

• Learning Strategy

Optimization methods: Pointwise loss (binary cross-entropy, mean square error), pairwise loss (BPR, WARP), and softmax loss

$$\mathcal{L}_0 = -\sum_{(u,i)\in O^+} \log \frac{\exp\left(\cos(\hat{\theta}_{ui})/\tau\right)}{\exp\left(\cos(\hat{\theta}_{ui})/\tau\right) + \sum_{j\in N_u} \exp\left(\cos(\hat{\theta}_{uj})/\tau\right)},$$

Methodology

Analyses

Experiments

Conclusion

SOTA debiasing strategies

- **Sample re-weighting methods** (e.g. IPS-CN) exploit the item popularity's inverse to re-weight loss of each instance.
- Causal inference methods (e.g. MACR, CausE)
 - specify the role of popularity bias in assumed causal graphs
 - mitigate the bias effect on the prediction.
- Regularization-based frameworks (e.g. Sam-reg)
 - Provides a tunable mechanism for controlling the trade-off between recommendation accuracy and coverage.
 - **Sam-reg** regularizes the biased correlation between user-item relevance and item popularity

3 Methodology BC Loss

4 Analyses

5 Experiments

BC Loss

$$\mathcal{L}_{\mathsf{BC}} = -\sum_{(u,i)\in O^+} \log \frac{\exp\left(\cos(\hat{\theta}_{ui} + M_{ui})/\tau\right)}{\exp\left(\cos(\hat{\theta}_{ui} + M_{ui})/\tau\right) + \sum_{j\in N_u} \exp\left(\cos(\hat{\theta}_{uj})/\tau\right)},$$

 M_{ui} : the bias-aware angular margin for the interaction (u, i)

$$M_{ui} = \min\{\hat{\xi}_{ui}, \pi - \hat{\theta}_{ui}\}$$

Intuition

If a user-item pair is the hard interaction that can hardly be reconstructed by its popularity statistics, it holds a high value of ξ_{ui} and leads to a high value of M_{ui} . Henceforward, BC loss imposes the large angular margin M_{ui} between the negative item j and positive item i.

Outline

1 Preliminary

2 Related Work

3 Methodology

4 Analyses

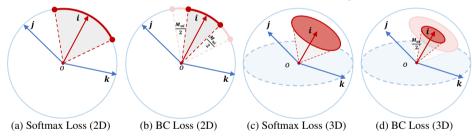
Geometric Interpretation Theoretical Properties

5 Experiments

Analyses(图像展示) Geometric Interpretation

• Geometric Interpretation

User u with one observed item i and two unobserved items j and k.



Analyses(数学环境) Theoretical Properties

• Theoretical Properties

Proof.	
1. There exists an upper bound m , s.t. $-1 < \cos(\hat{ heta}_{ui} + M_{ui}) \leq v_u^T v_i - m < 1$	
2.	
5. 4	
5.	
6.	

Methodology

Analyses

Experiments

Conclusion

Baselines

- Backbone: only use softmax loss
- IPS-CN: sample re-weighting methods
- CausE: bias removal by causal inference
- sam + reg: regularization-based framework
- MACR: bias removal by causal inference

Datasets

	KuaiRec	Douban Movie	Tencent	Amazon-Book	Alibaba-iFashion	Yahoo!R3	Coat
#Users	7175	36,644	95,709	52,643	300,000	14382	290
#Items	10611	22,226	41,602	91,599	81,614	1000	295
#Interactions	1062969	5,397,926	2,937,228	2,984,108	1,607,813	129,748	2,776
Sparsity	0.01396	0.00663	0.00074	0.00062	0.00007	0.00902	0.03245

3 Methodology

4 Analyses

6 Experiments

Contribution

- (Originality) Popular bias extractor has an intuitive geometric interpretation.
- (Quality) Outperforms existing methods in various evaluation protocols.
- (Clarity) Well-written and easy to understand. Theoretical proof is quite solid.

Limitation

- The technical contribution of this paper is limited. It only proposes to employ an extra popularity-based predictor and combine the results with an existing CF model [1].
- Overclaims the strength of the proposed BC loss in theoretical analysis. The geometric interpretability and the hard-negative mining ability are actually the same thing[2, 3]

[1] Kaiming He et al. "Momentum contrast for unsupervised visual representation learning". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020, pp. 9729–9738.

- [1] Kaiming He et al. "Momentum contrast for unsupervised visual representation learning". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020, pp. 9729–9738.
- [2] Tongzhou Wang and Phillip Isola. "Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere". In: Proceedings of Machine Learning Research. PMLR, 2020, pp. 9929–9939.
- [3] Fajie Yuan et al. "One person, one model, one world: Learning continual user representation without forgetting". In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021, pp. 696–705.

Thank you!