[PROJECT TITLE]

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF SCIENCE

in [Department]

by

[Full Name] (Reg. No. [IMSXXXXX])

to

SCHOOL OF [DEPARTMENT] INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH THIRUVANANTHAPURAM INDIA - 695 551

September 2025

CERTIFICATE

This is to certify that this dissertation entitled "[Project Title]" submitted by [Full Name] (Reg. No.: [IMSXXXXX]) towards the partial requirement of Master of Science in [Department], has been duly examined by the thesis committee appointed by the institute. The committee deems the candidate's work satisfactory and recommends that the report be accepted.

[TC Member 1] [TC Member 2] [TC Member 3]
[Faculty Position] [Faculty Position] [Faculty Position]

[Project Supervisor]

Project Supervisor

 $24 \ {\rm September} \ 2025$

Thiruvananthapuram - 695 551

DECLARATION

I, [Full Name] (Reg. No.: [IMSXXXXX]), hereby declare that this dissertation entitled "[Project Title]", submitted to Indian Institute of Science Education and Research, Thiruvananthapuram, towards the partial requirement of Master of Science in [Department], is a bona fide record of original work carried out by me under the supervision of [Project Supervisor].

This dissertation has never been submitted in part or in full for a degree, diploma or fellowship to this or any other university before. I duly acknowledge all external contributions, statements, datasets or results used, and have listed their sources with adequate detail in the bibliography.

[Full Name]

Reg. No.: [IMSXXXXX]

In my capacity as the project supervisor for the aforementioned candidate, I confirm that the above statements by the candidate are true to the best of my knowledge.

[Project Supervisor]

Project Supervisor

24 September 2025 Thiruvananthapuram - 695 551

ACKNOWLEDGEMENT

[Insert Acknowledgements here . . .]

I am lastly grateful to the Indian Institute of Science Education and Research Thiruvananthapuram for providing the necessary resources and facilities to complete this project to the best of my ability.

ABSTRACT

Student Name: [Full Name]	Reg. No.: $[IMSXXXXX]$
Degree: Master of Science	Dept.: School of [Department]

Thesis Title: [Project Title]

Thesis Supervisor: [Project Supervisor]

Date of thesis submission: 24 September 2025

The main aim of the project ...

Keywords:

Contents

Lis	t of	Figures	5	xii
${f Lis}$	t of	Tables		xiii
1	Intr	oductio	\mathbf{n}	1
	1.1	Section	-1 Name	1
		1.1.1	Equations and Math Examples	1
	1.2	Section	-2 Name	2
		1.2.1	Subsections	3
	1.3	Sample	Question and Proof	4
$\mathbf{A}\mathbf{p}$	pen	dices		6
A :	Lon	g Appe	ndix Title Here	6
-	A.1	First A	ppendix Section	6
		A.1.1	First Appendix Subsection	6
Bib	oliog	graphy		7

List of Figures

1.1	3D Cone designed by Gene R. using TikZ, see Images/Figures/3D_Cone.tex. Delete	
	to save compile time	:

List of Tables

Chapter 1

Introduction

Introductory lines...

1.1 Section-1 Name

Some text here.

Definition 1.1.1. Some definition...

Theorem 1.1.2. Some theorem...

Proof. Proof is as follows...

Corollary 1.1.3. A corollary to Theorem 1.1.2 is...

Remark 1.1.4. Some remark...

1.1.1 Equations and Math Examples

Equations can be typed as follows:

$$f(x) = \frac{x^2 - 5x + 6}{(e^x - 2)/10} = 10 \times \frac{(x - 2)(x - 3)}{e^x - 2}$$
(1.1)

Referencing labelled objects: Equation 1.1, or Theorem 1.1.2.

For multiline equations,

Array in Math Mode
$$\begin{cases} -\Delta u + \lambda u &= |u|^{p-2}, & \text{in } \Omega \\ u &\geq 0, & u \in H_0^1(\Omega) \end{cases}$$
 (1.2)

Using array in math mode or equarray is a quick and easy way to get the most customisable equation output, but is outdated and longer equations are prone to errors. Use of alternate multiline equation environments like multiline(*), align(*), gather(*) or split in any math-mode environment is recommended.

$$g(\theta) = i\theta$$
 $= (i\theta) \times \ln e$
 $= \ln(e^{i\theta})$ $= \ln(\cos \theta + i \sin \theta)$ (1.3)

1.2 Section-2 Name

Matrices in \LaTeX look like:

$$\begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} \times \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix} = \begin{pmatrix} \sin^2 \theta - \cos^2 \theta & 2\cos \theta \sin \theta \\ -2\cos \theta \sin \theta & -\cos^2 \theta + \sin^2 \theta \end{pmatrix}$$

$$= \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ -\sin 2\theta & -\cos 2\theta \end{pmatrix}$$

The brackets of a given matrix depend on the type of matrix called.

Here is a quick truth table:

P	Q	$\neg P$	$\neg P \to (P \lor Q)$
Т	Τ	F	Т
Т	F	F	Т
F	Τ	Τ	Т
F	F	T	F

Remark 1.2.1. Defining a table like this does not count in the LoT; use the table environment instead.

Remark 1.2.2. You can cite sources in footnotes as so. Ensure ref. bib is configured for biblatex. Disable verbose style to switch to inline references.

¹G.H. Golub and C.F. Van Loan. *Matrix Computations*. Second Edition. The John Hopkins University Press, 1989, pp. xiii+283.

1.2.1 Subsections

Subsubsection Example

Subsubsections do not appear in the ToC and lack numbering². To skip numbering in sections/subsections, use \section*{section_name}.

Theorem 1.2.3. Some theorem...

Proof. The proof is as follows...

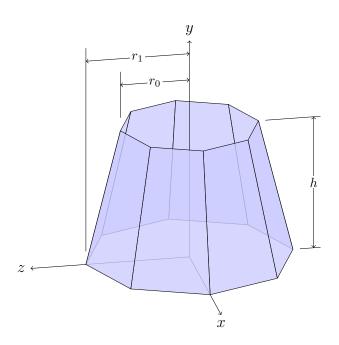


Figure 1.1: 3D Cone designed by Gene R. using TikZ, see Images/Figures/3D_Cone.tex. Delete to save compile time.

Remark 1.2.4. Figures float by default. Position may differ from the order in the code. Use optional arguments [!htbp] (here, top, bottom, next page) to influence placement.

To make your own commutative diagrams, consider using tools such as GraphViz, Quiver and IPE.

 $^{^2} Footnotes$ work for comments as well. For more, see $\verb|https://www.overleaf.com/learn/latex/Footnotes|$

1.3 Sample Question and Proof

Suppose A_i is a connected subset of a topological space X for $i=1,\ldots,n,$ and $A_i \cap A_{i+1} \neq \emptyset$ for all i. Prove that $A = \bigcup_{i=1}^n A_i$ is connected.

Proof by Contradiction. Assume A is disconnected. A can then be written as a union of two non-empty, disjoint, relatively open subsets, say, X and Y. Take some $x \in X$ and some $y \in Y$, with $x \in A_j$ and $y \in A_k$ for some $j \leq k$. Then

$$A_{l} \cap A_{l+1} \neq \emptyset \qquad \forall l \in \{j, \dots, k-1\}$$

$$\Rightarrow \qquad \therefore \quad \bigcup_{i=j}^{l} A_{i} \text{ is connected} \qquad \forall l \in \{j, \dots, k\}$$

$$(1.4)$$

Hence, $\bigcup_{i=1}^n A_i$ contains both x and y and is connected, contradicting our original assumption of the disjointness of X and Y. Therefore, $A = \bigcup_{i=1}^k A_i$ is connected. \square

Remark 1.3.1. \quad, \quad, \, and \! are effective in adjusting spacing as needed.

Appendices

Appendix A

Long Appendix Title Here

Write your Appendix content here. Sections and subsections can be used as well.

A.1 First Appendix Section

A.1.1 First Appendix Subsection

First Appendix Subsubsection

Appendices will show up in the ToC numbered as letters. This is of course totally customizable, please refer to the CTAN documentation (https://ctan.org/pkg/appendix?lang=en) for further clarity on the same.

Bibliography

- Andrews, K. and B. Rajiv. "On some applications of eigenvalues of Toeplitz matrices". In: *Journal of Mathematical Analysis and Applications* 56.2 (2007), pp. 237–239.
- Chang, C. C. "Algebraic analysis of many valued logics". In: *Transactions of American Mathematical Society* 88 (1958), pp. 467–490.
- Elmoataz, Abderrahim, Matthieu Toutain, and Daniel Tenbrinck. "On the p-laplacian and ∞ -laplacian on graphs with applications in image and data processing". In: SIAM Journal on Imaging Sciences 8 (4 Oct. 2015), pp. 2412–2451. ISSN: 19364954. DOI: 10.1137/15M1022793.
- Gerla, B. "Automata over MV-algebras". In: ISMVL '04: Proceedings of the 34th International Symposium on Multiple-Valued Logic. Washington, DC, USA: IEEE Computer Society, 2004, pp. 49–54.
- Golub, G.H. and C.F. Van Loan. *Matrix Computations*. Second Edition. The John Hopkins University Press, 1989, pp. xiii+283.