

Paper Title Here

First Author^{*,1,3}, Second Author², and Third Author¹

¹Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada ²Department of Civil Engineering, University of Ottawa, Ottawa, Canada ³National Research Council, Ottawa, Canada * Corresponding author's email: aaa@carleton.ca

<u>Abstract</u>: Write the abstract of the paper in this allotted space. Do not add modify the formatting. The abstract should be a maximum of 200 words.

Introduction

This is the LATEXtemplate for the full papers of the 4th Pan-American Conference on Unsaturated Soils, June 2025, Ottawa, Canada. Please do not modify the style, format, and structure of this file and only insert your text. For starting a new section, use \section*{} command instead of \section{}. Including * helps suppressing numbering. The length of the paper should not exceed 10 pages, including references.

Formatting Equations, Figures, and Tables

Use the following format for your equations, figures, and tables. Equations, figures, and tables should be numbered and appropriately referred to in the text.

Gibbs-Thomson Relation

The Gibbs-Thomson equation determines the critical pore radius below which the water is at a liquid state and can be described as follows:

$$T_m - T_0 = \frac{T_0 \gamma_{sl}}{\rho_i L_f R} \tag{1}$$

where T_m is the melting point of water in the pores, T_0 is the melting point of pure liquid water, γ_{sl} is the free energy coefficient of the ice–water interface, ρ_i is the ice-phase density, L_f is the latent heat of phase transformation, and R is the pore radius [1]. The variation of freezing temperature with pore radius, as predicted by Eq. 1 is shown in Fig. 1. The relation has been used for deriving the freezing characteristics curve, see for instance [2].

Figure 1: Gibbs-Thomson relation for freezing temperature of water in pores with varying radii.

Table 1	:	Parameters	for	water	and	ice	for	Gibbs-Thomson	equation ((1)).
100010 1		1 001001100010	- U -		corr or	100		0.10.00 ±1101110011	o que con a la la	· -	<i>,</i> .

$T_{0}\left(K\right)$	$\gamma_{sl} \left(J m^{-2} \right)$	$\rho_i (kg m^{-3})$	$L_f \left(J kg^{-1} \right)$
273.15	0.029	917	3.35×10^5

Reference Style

Please use the "unsrt" citation and referencing style for your paper. You can simply add your citations to the accompanying "refs.bib" file provided. Use @book and @techreport items in the .bib file to cite books and reports. Examples of a book [3] and a report [4] are given in the reference list.

Submitting Your Paper

Please upload the final version of your paper as a single PDF file to the conference webpage at https://www.panam-unsat2025.ca.

References

- É Devoie, S Gruber, and J McKenzie. A repository of measured soil freezing characteristic curves: 1921 to 2021. Earth System Science Data, 14(7):3365–3377, 2022.
- [2] MM Zhou and G Meschke. A three-phase thermo-hydro-mechanical finite element model for freezing soils. International Journal for Numerical and Analytical Methods in Geomechanics, 37(18):3173–3193, 2013.
- [3] D. G. Fredlund and H. Rahardjo. Soil mechanics for unsaturated soils. John Wiley & Sons, 1993.
- [4] D. Evans. Unsaturated flow and transport through fractured rock-related to high-level waste repositories. Final report. Phase I. Technical report, Arizona Univ., Tucson (USA). Dept. of Hydrology and Water Resources, 1983.