STAT 251 Formula Sheet

Measures of Center

Mean: $\quad \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$
Median: If n is even then $\tilde{x}=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { obs. }+\left(\frac{n+1}{2}\right)^{\text {th }} \text { obs. }}{2}$ If n is odd then $\tilde{x}=\frac{n+1}{2}^{\text {th }}$ obs.

Measures of Variability

Range:

$R=x_{\text {largest }}-x_{\text {smallest }}$
Variance:
$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}{n-1}$
Standard deviation: $\quad s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}{n-1}}$
IQR:
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1$
Method to compute $\mathbf{Q}_{(p)}$:

- Sort data from smallest to largest: $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$
- Compute the number $n p+0.5$
- If $n p+0.5$ is an integer, m, then: $\mathrm{Q}_{(p)}=x_{(m)}$
- If $n p+0.5$ is not an integer, $m<n p+0.5<m+1$ for some integer m, then: $\mathrm{Q}_{(p)}=\frac{x_{(m)}+x_{(m+1)}}{2}$

Outliers:

- Values smaller than Q1 - (1.5 $\times \mathrm{IQR})$ are outliers
- Values greater than $\mathrm{Q} 3+(1.5 \times \mathrm{IQR})$ are outliers

Discrete Random Variables

Consider a discrete random variable X
Probability Mass Function (pmf): $f(x)=P(X=x)$

1. $f(x) \geq 0$ for all x in X
2. $\sum_{x} f(x)=1$

Cumulative Distributive Function (cdf): $F(x)=P(X \leq x)=\sum_{k \leq x} f(k)$
Mean (μ) : $\quad E(X)=\sum_{x} x f(x)$
Expected value:
$E(g(X))=\sum_{x} g(x) f(x)$
Variance (σ^{2}):
SD (σ):
$\operatorname{Var}(X)=\sum_{x}(x-\mu)^{2} f(x)=E\left(X^{2}\right)-[E(X)]^{2}$
$S D(X)=\sqrt{\operatorname{Var}(X)}$

Sets and Probability

Properties of Probability:

- General Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Complement Rule: $P\left(A^{c}\right)=1-P(A)$
- If $A \subseteq B$ then $P(A \cap B)=P(A)$
- If $A \subseteq B$ then $P(A) \leq P(B)$
- $P(\emptyset)=0$ and $P(S)=1$
- $0 \leq P(A) \leq 1$ for all A

Conditional Probability:

- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ and $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
- Multiplication Rule: $P(A \cap B)=P(B) \times P(A \mid B)$ and $P(A \cap B)=P(A) \times P(B \mid A)$
- Events A and B are independent if and only if $P(A \cap B)=P(A) P(B)$ and thus $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$
Bayes' Theorem: $\quad P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}$
$=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)}$

Continuous Random Variables

Consider a continuous random variable X
Probability Density Function (pdf): $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$

1. $f(x) \geq 0$ for all x
2. $\int_{-\infty}^{\infty} f(x) d x=1$

Cumulative Distributive Function (cdf): $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$

$$
\begin{array}{ll}
\text { Median: } & x \text { such that } F(x)=0.5 \\
Q_{1} \text { and } Q_{3}: & x \text { such that } F(x)=0.25 \text { and } x \text { such that } F(x)=0.75 \\
\text { Mean }(\mu): & E(X)=\int_{-\infty}^{\infty} x f(x) d x \\
\text { Expected value: } & E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x \\
\text { Variance }\left(\sigma^{2}\right): & \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-[E(X)]^{2} \\
\text { SD }(\sigma): & S D(X)=\sqrt{\operatorname{Var}(X)}
\end{array}
$$

Summarizing Main Features of $f(x)$

Consider two random variables X, Y
Properties of Probability:

- $E(a X+b)=a E(X)+b$, for $a, b \in \mathbb{R}$
- $E(X+Y)=E(X)+E(Y)$, for all pairs of X and Y
- $E(X Y)=E(X) E(Y)$, for independent X and Y
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$, for $a, b \in \mathbb{R}$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
$\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$, for independent X and Y

Covariance:

- $\operatorname{Cov}(X, Y)=E[X-E(X)][Y-E(Y)]=E(X Y)-E(X) E(Y)$

If X and Y are independent, $\operatorname{Cov}(X, Y)=0$

- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$
- $\operatorname{Var}(a X+b Y+c)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$

Sum and Average of Independent Random Variables

Sum of Independent Random Variables:
$Y=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}$, for $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$

- $E(Y)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\operatorname{Var}(Y)=a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}^{2} \operatorname{Var}\left(X_{n}\right)$

If n random variables X_{i} have common mean μ and common variance σ^{2} then,

- $E(Y)=\left(a_{1}+a_{2}+\ldots+a_{n}\right) \mu$
- $\operatorname{Var}(Y)=\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right) \sigma^{2}$

Average of Independent Random Variables:

$X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables

- $\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$
- $E[\bar{X}]=\frac{1}{n}\left[E\left(X_{1}\right)+E\left(X_{2}\right)+\ldots+E\left(X_{n}\right)\right]$
- $\operatorname{Var}[\bar{X}]=\frac{1}{n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)\right]$

If n random variables X_{i} have common mean μ and common variance σ^{2} then,

- $E[\bar{X}]=\mu$
- $\operatorname{Var}[\bar{X}]=\frac{\sigma^{2}}{n}$

Maximum and Minimum of Independent Variables

Given n independent random variables $X_{1}, X_{2}, \ldots, X_{n}$.
For each $X_{i}, \operatorname{cdf} F_{X}(x)$ and pdf is $f_{X}(x)$.

Maximum of Independent Random Variables:

Consider $V=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
cdf of V

$$
F_{V}(v)=P(V \leq v)=P\left(X_{1} \leq v, X_{2} \leq v, \ldots, X_{n} \leq v\right)
$$

$$
=P\left(X_{1} \leq v\right) P\left(X_{2} \leq v\right) \ldots P\left(X_{n} \leq v\right)=F_{X_{1}}(v) F_{X_{2}}(v) \ldots F_{X_{n}}(v)
$$

$$
=\left[F_{X}(v)\right]^{n} ; \text { if } X_{i} \text { 's are all identically distributed }
$$

$$
\begin{aligned}
\frac{\text { pdf of V }}{f_{V}(v)} & =F_{V}^{\prime}(v)=\frac{d}{d v} F_{V}(v)=\frac{d}{d v}\left[F_{X}(v)\right]^{n}=n\left[F_{X}(v)\right]^{n-1} \frac{d}{d v} F_{X}(v) \\
& =n\left[F_{X}(v)\right]^{n-1} f_{X}(v)
\end{aligned}
$$

Minimum of Independent Random Variables:
Consider $U=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

$$
\begin{aligned}
\frac{\text { cdf of } \mathrm{U}}{F_{U}(u)} & =P(U \leq u)=1-P(U>u)=1-P\left(X_{1}>u, X_{2}>u, \ldots, X_{n}>u\right) \\
& =1-P\left(X_{1}>u\right) P\left(X_{2}>u\right) \ldots P\left(X_{n}>u\right) \\
& =1-\left[1-F_{X_{1}}(u)\right]\left[1-F_{X_{2}}(u)\right] \ldots\left[1-F_{X_{n}}(u)\right] \\
& =1-\left[1-F_{X}(u)\right]^{n} ; \text { if } X_{i} \text { 's are all identically distributed }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\operatorname{pdf} \text { of } \mathrm{U}}{f_{U}(u)} & =F_{U}^{\prime}(u)=\frac{d}{d u}\left\{1-\left[1-F_{X}(u)\right]^{2}\right\}=0-n\left[1-F_{X}(u)\right]^{n-1} \frac{d}{d u}\left(-F_{X}(u)\right) \\
& =n\left[1-F_{X}(u)\right]^{n-1} f_{X}(u)
\end{aligned}
$$

Some Continuous Distributions

Uniform Distribution: $X \sim U(a, b)$
Mean: $\quad \mu=E(X)=\frac{a+b}{2}$
Variance: $\quad \sigma^{2}=\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$
pdf of X
$f(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \underline{\text { cdf of X }} \\
& F(x)= \begin{cases}0 & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x>b\end{cases}
\end{aligned}
$$

Exponential Distribution: $X \sim \operatorname{Exp}(\lambda)$
Mean: $\quad \mu=E(X)=\frac{1}{\lambda}$
Variance: $\quad \sigma^{2}=\operatorname{Var}(X)^{\lambda}=\frac{1}{\lambda^{2}}$
pdf of X
$f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}$
cdf of X
$F(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}$

Normal Distribution

Normal Distribution: $X \sim N\left(\mu, \sigma^{2}\right)$
Standardized Normal: $Z \sim N(0,1)$ where $Z=\frac{X-\mu}{\sigma}$

68-95-99.7 Rule:

- approximately 68% of observations fall within σ of μ
- approximately 95% of observations fall within 2σ of μ
- approximately 99.7% of observations fall within 3σ of μ

Bernoulli and Binomial Random Variables

Bernoulli Random Variable:

Bernoulli random variable X has only two outcomes, success and failure.
$P($ Success $)=p$ and $P($ Failure $)=1-p$

Bernoulli Distribution:

$X \sim \operatorname{Bernoulli}(p)$
pmf: $P(X=x)=p^{x}(1-p)^{1-x}$ for $x=0,1$
Mean: $\quad \mu=E(X)=p$
Variance: $\quad \sigma^{2}=\operatorname{Var}(X)=p(1-p)$

Binomial Random Variable:

Binomial random variable X is the number of successes for n independent trials and each trial has the same probability of success p.

Binomial Distribution:

$X \sim \operatorname{Bin}(n, p)$
pmf: $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$ for $x=0,1,2, \ldots, n$
cdf: $P(X \leq x)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{n-i}$ for $x=0,1,2, \ldots, n$
Note: $\binom{n}{x}=\frac{n!}{x!(n-x)!}$
Mean: $\quad \mu=E(X)=n p$
Variance: $\quad \sigma^{2}=\operatorname{Var}(X)=n p(1-p)$

Geometric Distribution

Geometric Random Variable:

Geometric random variable X is the number of independent trials needed until the first success occurs.

Geometric Distribution:

$X \sim \operatorname{Geo}(p)$ where p is the probability of success
pmf: $P(X=x)=p(1-p)^{x-1}$ for $x=1,2,3, \ldots$
cdf: $P(X \leq x)=1-(1-p)^{x}$ for $x=1,2,3, \ldots$
Mean: $\quad \mu=E(X)=\frac{1}{p}$
Variance: $\quad \sigma^{2}=\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Poisson Distribution

Poisson Process:
Random variable X is the number of occurrences in a given interval.

Poisson Distribution:

$X \sim \operatorname{Poisson}(\lambda)$ where λ is the rate of occurrences
pmf: $P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ for $x=0,1,2,3, \ldots$
cdf: $P(X \leq x)=\sum_{i=0}^{x} \frac{\lambda^{i} e^{-\lambda}}{i!}$ for $x=0,1,2,3, \ldots$
Mean:

$$
\mu=E(X)=\lambda
$$

Variance: $\quad \sigma^{2}=\operatorname{Var}(X)=\lambda$

- Let $T \sim \operatorname{Exp}(\lambda)$ be the time between two consecutive occurrences of events. (Can also be the waiting time for first event.)

Poisson Approximation to the Binomial Distribution

Let $X \sim \operatorname{Bin}(n, p)$ be a binomial random variable. If n is large $(n \geq 20)$ and p or $1-p$ is small $(n p<5$ or $n(1-p)<5)$, then we can use a Poisson random variable with rate $\lambda=n p$ to approximate the probabilistic behaviour of X.
$X \sim \operatorname{Poisson}(n p)$, approx. for $x=0,1,2, \ldots n$

Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an arbitrary population/distribution with mean μ and variance σ^{2}. When n is large ($n \geq 20$) then
$\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, approx.
When dealing with sum, the CLT can still be used. Then
$T=X_{1}+X_{2}+\ldots+X_{n}=n \bar{X}$
$T \sim N\left(n \mu, n \sigma^{2}\right)$, approx.

Normal Approximation to the Binomial Distribution

Let $X \sim \operatorname{Bin}(n, p)$. When n is large so that both $n p \geq 5$ and $n(1-p) \geq 5$. We can use the normal distribution to get an approximate answer. Remember to use continuity correction.
$X \sim N(n p, n p(1-p))$, approx.

Normal Approximation to the Poisson Distribution

Let $X \sim \operatorname{Poisson}(\lambda)$. When λ is large $(\lambda \geq 20)$ then the Normal distribution can be used to approximate the Poisson distribution. Remember to use continuity correction.
$X \sim N(\lambda, \lambda)$, approx.

Continuity Correction

Consider continuous random variable Y and discrete random variable X.

- $P(X>4)=P(X \geq 5)=P(Y \geq 4.5)$
- $P(X \geq 4)=P(Y \geq 3.5)$
- $P(X<4)=P(X \leq 3)=P(Y \leq 3.5)$
- $P(X \leq 4)=P(Y \leq 4.5)$
- $P(X=4)=P(3.5 \leq Y \leq 4.5)$

Point Estimators

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are random samples from a population with mean μ and variance σ^{2}

- \bar{x} is an unbiased estimator of μ

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

- s^{2} is an unbiased estimator of σ^{2} $s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}{n-1}$
- θ is the parameter, $\hat{\theta}$ is the point estimator. When $E(\hat{\theta})=\theta, \hat{\theta}$ is an unbiased estimator. The bias of an estimator is $\operatorname{bias}(\theta)=E(\hat{\theta})-\theta$.

Confidence Interval

$(1-\alpha) 100 \%$ Confidence Interval for population mean μ :

(point estimator of μ is \bar{x})
General Form: point estimate \pm margin of error
When σ^{2} is known: $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
When σ^{2} is unknown: $\bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$
Typical z values of α :
$\alpha=0.1 \quad 90 \% \quad z_{\frac{\alpha}{2}}=z_{0.05}=1.645$
$\alpha=0.05 \quad 95 \% \quad z_{\frac{\alpha}{2}}=z_{0.025}=1.96$
$\alpha=0.01 \quad 99 \% \quad z_{\frac{\alpha}{2}}^{2}=z_{0.005}=2.575$
$(1-\alpha) 100 \%$ Confidence Interval for $\mu_{1}-\mu_{2}$:
$\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\frac{\alpha}{2}, n_{1}+n_{2}-2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$

Pooled Standard Deviation

Requires assumptions that population variances are equal: $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$
The pooled standard deviation s_{p} estimates the common standard deviation σ.
$s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}$

Testing of Hypotheses about μ

H_{o} : Null hypothesis is a tentative assumption about a population parameter.
H_{a} : Alternative hypothesis is what the test is attempting to establish.

- $H_{o}: \mu \geq \mu_{o}$ vs $H_{a}: \mu<\mu_{o}$ (one-tail test, lower-tail)
- $H_{o}: \mu \leq \mu_{o}$ vs $H_{a}: \mu>\mu_{o}$ (one-tail test, upper-tail)
- $H_{o}: \mu=\mu_{o}$ vs $H_{a}: \mu \neq \mu_{o}$ (two-tail test)

Test Statistic:
Case 1: σ^{2} is known
$z=\frac{\bar{x}-\mu_{o}}{\frac{\sqrt{n}}{\sqrt{n}}} \sim N(0,1)$
Case 2: σ^{2} is unknown
$t=\frac{\bar{x}-\mu_{o}}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$

Type I and Type II errors:

Type I error: rejecting H_{o} when H_{o} is true
Type II error: not rejecting H_{o} with H_{o} is false
$P($ Type I error $)=\alpha$
$P($ Type II error $)=\beta$

Power is the probability of rejecting H_{o}, when H_{o} is false.
Power $=1-\beta$

Comparison of two means:

Two independent populations with means μ_{1} and μ_{2}.
Assume random samples, normal distributions, and equal variances $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$.

- $H_{o}: \mu_{1}-\mu_{2} \geq \Delta_{o}$ vs $H_{a}: \mu_{1}-\mu_{2}<\Delta_{o}$ (lower-tail)
- $H_{o}: \mu_{1}-\mu_{2} \leq \Delta_{o}$ vs $H_{a}: \mu_{1}-\mu_{2}>\Delta_{o}$ (upper-tail)
- $H_{o}: \mu_{1}-\mu_{2}=\Delta_{o}$ vs $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{o}$ (two-tail)

Test Statistic:

$t=\frac{\left(\bar{\chi}_{1}-\bar{\chi}_{2}\right)-\Delta_{o}}{s_{p} \sqrt{\frac{1}{n}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2}$
s_{p} is the pooled standard deviation

Rejection Rules:

Consider test statistic z, and significance value α.

- Lower-tail test: Reject H_{o} if $z \leq z_{\alpha}$
- Upper-tail test: Reject H_{o} if $z \geq z_{\alpha}$
- Two-tail test: Reject H_{o} if $|z| \geq z_{\frac{\alpha}{2}}$

Analysis of Variance (ANOVA)

One-way ANOVA:

$k=$ number of populations or treatments being compared
$\mu_{1}=$ mean of population 1 or true average response when treatment 1 is applied.
...
$\mu_{k}=$ mean of population k or true average response when treatment k is applied.

Assumptions:

- For each population, response variable is normally distributed
- Variance of response variable, σ^{2} is the same for all the populations
- The observations must be independent

Hypotheses:

$H_{o}: \mu_{1}=\mu_{2}=\ldots=\mu_{k}$
$H_{a}: \mu_{i} \neq \mu_{j}$ for $i \neq j$

Notation:

$y_{i j}$ is the $j^{t h}$ observed value from the $i^{t h}$ population/treatment.

$$
\begin{array}{ll}
\text { Total mean: } & \bar{y}_{i .}=\frac{y_{i} .}{n_{i}}=\frac{\sum_{j=1}^{n_{i}} y_{i j}}{n_{i}} \\
\text { Total sample size: } & n=n_{1}+n_{2}+\ldots+n_{k} \\
\text { Grand total: } & y . .=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j} \\
\text { Grand mean: } & \bar{y} . .=\frac{y_{i}}{n}=\frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j}}{n} \\
s^{2}=\frac{\sum_{j=1}^{k}\left(n_{i}-1\right) s_{i}^{2}}{n-k}=\text { MSE, where } s_{i}^{2}=\frac{\sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}}{n_{i}-1}
\end{array}
$$

The ANOVA Table:

Source of Variation	df	Sum of Squares	Mean Square	F-ratio
Treatment	$k-1$	SSTr	MSTr $=\frac{S S T r}{k-1}$	$\frac{M S T r}{M S E}$
Error	$n-k$	SSE	MSE $=\frac{S S E}{n-k}$	
Total	$n-1$	SST		

$$
\begin{array}{ll}
\mathrm{SST} & =\mathrm{SSTr}+\mathrm{SSE} \\
\mathrm{SST} & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{. .}\right)^{2}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j}^{2}-\frac{1}{n} y_{. .}^{2} \\
\mathrm{SSTr} & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}=\sum_{i=1}^{k} \frac{1}{n_{i}} y_{i .}^{2}-\frac{1}{n} y_{. .}^{2} \\
\mathrm{SSE} & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{i j}^{2}-\sum_{i=1}^{k} \frac{y_{i .}^{2}}{n_{i}}=\sum_{i=1}^{k}\left(n_{i}-1\right) s_{i}^{2}
\end{array}
$$

Test Statistic:

$$
F_{o b s}=\frac{\mathrm{MSTr}}{\mathrm{MSE}} \sim F_{v_{1}, v_{2}} \quad \begin{array}{ll}
& v 1=d f(\mathrm{SSTr})=k-1 \\
& v 2=d f(\mathrm{SSE})=n-k
\end{array}
$$

Reject H_{o} if $F_{o b s} \geq F_{\alpha, v_{1}, v_{2}}$

Covariance and Correlation Coefficient

On a scatter plot, each observation is represented as a point with x-coord x_{i} and y-coord y_{i}.

Sample Covariance: $\operatorname{Cov}(x, y)$

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i} y_{i}-\frac{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n}\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}\right]
\end{aligned}
$$

- If x and y are positively associated, then $\operatorname{Cov}(x, y)$ will be large and positive
- If x and y are negatively associated, then $\operatorname{Cov}(x, y)$ will be large and negative
- If the variables are not positively nor negatively associated, then $\operatorname{Cov}(x, y)$ will be small

Sample Correlation Coefficient: r

$r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$, where $s_{x}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$ and $s_{y}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$ $r=\frac{\operatorname{Cov}(x, y)}{s_{x} s_{y}}$

- Always falls between -1 and +1
- A positive r value indicates a positive association
- A negative r value indicates a negative association
- r value close to +1 or -1 indicates a strong linear association
- r value close to 0 indicates a weak association

Simple Linear Regression

Regression Line:
Simple linear regression model: $y=\beta_{o}+\beta_{1} x+\varepsilon$
β_{o}, β_{1}, and σ^{2} are parameters, y and ε are random variables. ε is the error term.
True regression line: $E(y)=\beta_{o}+\beta_{1} x$
Least squares regression line: $\hat{y}=\hat{\beta}_{o}+\hat{\beta_{1}} x$
$\hat{y}, \hat{\beta}_{o}$, and $\hat{\beta_{1}}$ are point estimates for y, β_{o}, and β_{1}.
Residual: $\varepsilon_{i}=y_{i}-\hat{y}_{i}$
$\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=r \frac{s_{y}}{s_{x}}$
$\hat{\beta_{o}}=\frac{\sum_{i=1}^{n} y_{i}-\hat{\beta_{1}} \sum_{i=1}^{n} x_{i}}{n}=\bar{y}-\hat{\beta_{1}} \bar{x}$

Coefficient of Determination: r^{2}

The proportion of observed y variation that can be explained by the simple linear regression model.

```
Estimating \mp@subsup{\sigma}{}{2}}\mathrm{ (SLR)
\mp@subsup{\hat{\sigma}}{}{2}}=\mp@subsup{s}{}{2}=\frac{\textrm{SSE}}{n-2}=\frac{\mp@subsup{\sum}{i=1}{n}(\mp@subsup{y}{i}{}-\mp@subsup{\hat{y}}{i}{}\mp@subsup{)}{}{2}}{n-2
Error Sum of Squares (SSE):
```



```
SSE is a measure of variation in }y\mathrm{ left unexplained by linear regression model.
Total Sum of Squares (SST):
```



```
SST is sum of squared deviations about sample mean of observed y values.
Regression Sum of Squares (SSR):
```



```
SSR is total variation explained by the linear regression model.
\(\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}\)
Coefficient of Determination from SST, SSR, and SSE:
\(r^{2}=1-\frac{S S E}{S S T}\)
or
\(r^{2}=\frac{S S R}{S S T}\)
```


Slope Parameter β_{1} (SLR)

When $\beta_{1}=0$ there is no linear relationship between the two variables.

Hypotheses:

$H_{o}: \beta_{1}=0$
$H_{a}: \beta_{1} \neq 0$
Test statistic:
$t_{\text {obs }}=\frac{\beta_{1}}{s_{\beta_{1}}} \sim t_{n-2}$, where $s_{\hat{\beta}_{1}}=\frac{s}{s_{x} \sqrt{n-1}}$
Reject H_{o} if $\left|t_{\text {obs }}\right| \geq t_{\frac{\alpha}{2}, n-2}$
($1-\alpha$) 100% Confidence Interval for β_{1} :
$\hat{\beta}_{1} \pm t_{\frac{\alpha}{2}, n-2} s_{\hat{\beta}_{1}}$

