Stat/Discrete Methods for Sci Computing Problem Set 1

Qi Lei

January 26, 2015

1 Exercise 1

(1) Given the distribution $\frac{1}{3 \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{1}{3}\right) 2}$ what is the probability that $x>1$?

Solution:

$$
\begin{aligned}
P(x>1) & =\int_{1}^{\infty} \frac{1}{3 \sqrt{2 \pi}} x e^{-\frac{1}{2}\left(\frac{x}{3}\right)^{2}} d x \\
& =\frac{1}{3 \sqrt{2 \pi}} \int_{1}^{\infty} \frac{1}{2} e^{-\frac{1}{18} x^{2}} d x^{2} \quad\left(y \doteq \frac{1}{18} x^{2}\right) \\
& =\frac{3}{\sqrt{2 \pi}} \int_{\frac{1}{18}}^{\infty}-e^{-y} d y \\
& =\frac{3}{\sqrt{2 \pi}} e^{-\frac{1}{18}}
\end{aligned}
$$

(2) Compare the Markov and Chebyshev bounds for the following probability distributions:
a) $p(x)= \begin{cases}1, & x=1 \\ 0, & \text { otherwise }\end{cases}$
b) $p(x)= \begin{cases}\frac{1}{2}, & 0 \leq x \leq 2 \\ 0, & \text { otherwise }\end{cases}$

Solution:
For a), $E(x)=1, \operatorname{Var}(x)=0$. So Markov inequality for a) is $\operatorname{Prob}(x \geq a) \leq \frac{1}{a}$, while Chebyshev inequality for a) vanishes to $\operatorname{Prob}(|x-1|>0)=0$.

For b), $E(x)=\int_{0}^{2} \frac{1}{2} x d x=1, \operatorname{Var}(x)=\int_{0}^{2} \frac{1}{2}(x-1)^{2} d x=\frac{1}{3}$. So Markov inequality for b) is $\operatorname{Prob}(x \geq a) \leq \frac{1}{a}$ (which is the same as in problem a), while Chebyshev inequality for b) is $\operatorname{Prob}\left(|x-1|>\sqrt{\frac{1}{3}} a\right) \leq \frac{1}{a^{2}}$.
(3) Let s be the sum of n independent ransom variables $x_{1}, x_{2}, \cdots, x_{n}$ where for each i,

$$
x_{i}= \begin{cases}0, & \text { Prob is } p \\ 1, & \text { Prob is } 1-p\end{cases}
$$

How large must δ be if we wish to have $\operatorname{Prob}(s>(1+\delta) n)<\epsilon$
Solution:
$E\left(x_{i}\right)=1-p, \operatorname{Var}(x)=(1-(1-p))^{2}(1-p)+(0-(1-p))^{2} p=p^{2}(1-p)+(1-p)^{2} p=p^{2}-p^{3}+$ $p-2 p^{2}+p^{3}=p-p^{2}$.
So $\operatorname{Prob}(x \geq a) \leq \frac{1-p}{a}$ for each i. So $E(s)=n(1-p), \operatorname{Var}(s)=n p(1-p)$.
Applying Markov inequality we get $\operatorname{Prob}(x \geq n(1+\delta)) \leq \frac{n(1-p)}{n(1+\delta)}=\epsilon$. So $\delta=\frac{1-p}{\epsilon}-1$
Applying Chebyshev inequality we get $\operatorname{Prob}(|s-n(1-p)|>\operatorname{anp}(1-p)) \leq \frac{1}{a^{2}}=\epsilon$. So $a=\sqrt{\frac{1}{\epsilon}}$ $\operatorname{Prob}\left(x<n(1-p)-\sqrt{\frac{1}{\epsilon}} n p(1-p) \leq \epsilon\right.$. Therefore take $\delta \doteq 1-(1-p)\left(1-\sqrt{\frac{1}{\epsilon}} p\right)$. We have for sure that $\operatorname{Prob}\left(x<n(1-\delta)=\operatorname{Prob}\left(x<n(1-p)\left(1-\sqrt{\frac{1}{\epsilon}} p\right) \leq \epsilon\right.\right.$.

2 Exercise 2

(1) For what values of d do area, $A(d)$, and the volume, $V(d)$, of a d-dimensional unit sphere take on their maximum values?

$$
\begin{aligned}
A(d) & =\frac{2 \pi^{d / 2}}{\Gamma\left(\frac{d}{2}\right)} \\
\frac{A(d+2)}{A(d)} & =\frac{2 \pi}{d} \begin{cases}<1, & d \geq 7 \\
>1, & d \leq 6\end{cases}
\end{aligned}
$$

This means $\cdots<A(11)<A(9)<A(7)>A(5)>A(3)$ and $\cdots<A(10)<A(8)>A(6)>A(4) . A(7)$ and $A(8)$ are the largest $A(d)$ for respectively odd d and even d. While $A(7)=\frac{2 \pi^{3.5}}{\Gamma(3.5)} \approx 33.07$, and $A(8)=\frac{2 \pi^{4}}{\Gamma(4)} \approx 32.47$. So $A(7)=\frac{2 \pi^{3.5}}{\Gamma(3.5)}$ is the largest $A(d)$ for every $d \geq 1$.

$$
\begin{aligned}
V(d) & =\frac{2 \pi^{d / 2}}{d \Gamma\left(\frac{d}{2}\right)} \\
\frac{V(d+2)}{V(d)} & =\frac{2 \pi}{d+2} \begin{cases}<1, & d \geq 5 \\
>1, & d \leq 4\end{cases}
\end{aligned}
$$

This means $V(5)$ and $V(6)$ are the largest volumes $V(d)$ fo respectively odd d and even d. Turns out $V(5)=\frac{2 \pi^{2.5}}{5 \Gamma(2.5)} \approx 5.26(>V(6) \approx 5.17)$ is the largest volume.
(2) How do the area and the volume of a sphere with radius=2 behave as the dimension of the space increases? What if the radius was larger than two but independent of d ?
radius=2

$$
\begin{aligned}
A(d) & =\frac{2 \pi^{d / 2} 2^{d-1}}{\Gamma\left(\frac{d}{2}\right)} \\
\frac{A(d+2)}{A(d)} & =\frac{8 \pi}{d}\left\{\begin{array}{cc}
<1, & d \geq 26 \\
>1, & d \leq 25
\end{array}\right.
\end{aligned}
$$

This means $A(26)$ and $A(27)$ are the largest area $A(d)$ fo respectively even d and odd d. Turns out $A(26)=\frac{2^{1} 4 \pi^{13}}{\Gamma(13)} \approx 4.07 \times 10^{5}\left(>V(27) \approx 4.04 \times 10^{5}\right)$ is the largest area.

$$
\begin{aligned}
V(d) & =\frac{2 \pi^{d / 2} 2^{d}}{d \Gamma\left(\frac{d}{2}\right)} \\
\frac{V(d+2)}{V(d)} & =\frac{8 \pi}{d+2} \begin{cases}<1, & d \geq 24 \\
>1, & d \leq 23\end{cases}
\end{aligned}
$$

This means $V(24)$ and $V(25)$ are the largest volumes $V(d)$ fo respectively even d and odd d. Turns out $V(24)=\frac{2^{2} 2 \pi^{12}}{3 \Gamma(12)} \approx 3.24 \times 10^{4}\left(>V(25) \approx 3.21 \times 10^{4}\right)$ is the largest volume.

As we can see from the previous analysis, both area and volume increase with respect to d for smaller d and decrease when d is large. And when radius is larger than 2, this boundary between increase and decrease will be larger, meaning $\operatorname{argmax}_{d} A(d)$ and $\operatorname{argmax}_{d} V(d)$ will be larger.
(3) What function of d would the radius need to be for a sphere of radius r to have approximately constant volume as the dimension increases?

$$
\begin{aligned}
V(d, r) & =\frac{2 \pi^{d / 2} r^{d}}{d \Gamma\left(\frac{d}{2}\right)} \\
\frac{V(d+2, r)}{V(d, r)} & =\frac{2 \pi r^{2}}{d+2}=1 \\
\therefore r & =\sqrt{\frac{d+2}{2 \pi}} \\
\text { Then } V(d) & =\left\{\begin{aligned}
\sqrt{\frac{6}{\pi}}, & d \text { odd } \\
2, & d \text { even }
\end{aligned}\right.
\end{aligned}
$$

3 Exercise 3

(1) For each of $a=2$, and 3 give a probability distribution for a nonnegative random variable x were $\operatorname{Prob}(x \geq a E(x))=\frac{1}{a}$.

Solution:

$$
\begin{aligned}
& \mathrm{a}=2: p(x)=\left\{\begin{array}{ll}
1 / 2, & x=2 \\
1 / 2, & x=0
\end{array} \quad E(x)=1 . \operatorname{Prob}(x \geq a E(x))=\operatorname{Prob}(x \geq 2)=\frac{1}{2}=\frac{1}{a}\right. \\
& \mathrm{a}=3: p(x)=\left\{\begin{array}{ll}
1 / 3, & x=3 \\
2 / 3, & x=0
\end{array} \quad E(x)=1 \cdot \operatorname{Prob}(x \geq a E(x))=\operatorname{Prob}(x \geq 3)=\frac{1}{3}=\frac{1}{a}\right.
\end{aligned}
$$

(2)

$$
p(x)=\left\{\begin{array}{rr}
1 / a, & x=a \\
1-1 / a, & x=0
\end{array} \quad E(x)=1 . \operatorname{Prob}(x \geq a E(x))=\operatorname{Prob}(x \geq a)=\frac{1}{a}\right.
$$

4 Exercise 4

Suppose sphere 1 is centered at origin, while sphere 2 is centered at $a e_{1}=(a, 0,0, \cdots, 0)$. The intersection becomes

$$
\left\{\begin{aligned}
\left(x_{1}-a\right)^{2}+x_{2}^{2}+\cdots+x_{d}^{2} & \leq 1 \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2} & \leq 1
\end{aligned}\right.
$$

Consider the cap of S_{1}

$$
\left\{\begin{aligned}
x_{1} & \geq \frac{a}{2} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2} & \leq 1
\end{aligned}\right.
$$

It's easy to see this cap is also contained in S_{2}. $\left(\left(x_{1}-a\right)^{2}+x_{2}^{2}+\cdots+x_{d}^{2} \leq\left(x_{1}-a\right)^{2}+1-x_{1}^{2} \leq\right.$ $\left.\left(\frac{a}{2}-1\right)^{2}+1-\left(\frac{a}{2}\right)^{2}=1\right)$ Likewise the cap of S_{2}

$$
\left\{\begin{array}{r}
x_{1} \leq \frac{a}{2} \\
\left(x_{1}-a\right)^{2}+x_{2}^{2}+\cdots+x_{d}^{2} \leq 1
\end{array}\right.
$$

is also contained in S_{1}. So by considering the volume of these two caps we can decide the volume of their intersection.
Applying the Lemma with the plane $x_{1}=\frac{a}{2},\left(c=\frac{a \sqrt{d-1}}{2}\right)$ we get the fraction of the volume of the cap is below $\frac{2}{c} e^{-\frac{c^{2}}{2}}=\frac{4}{a \sqrt{d-1}} e^{-\frac{a^{2}(d-1)}{8}}$

