Stat/Discrete Methods for Sci Computing Problem Set 1

Qi Lei

January 26, 2015

1 EXERCISE 1

(1) Given the distribution $\frac{1}{3\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x}{3})^2}$ what is the probability that x > 1? Solution:

$$P(x>1) = \int_{1}^{\infty} \frac{1}{3\sqrt{2\pi}} x e^{-\frac{1}{2}(\frac{x}{3})^{2}} dx$$

$$= \frac{1}{3\sqrt{2\pi}} \int_{1}^{\infty} \frac{1}{2} e^{-\frac{1}{18}x^{2}} dx^{2} \qquad (y \doteq \frac{1}{18}x^{2})$$

$$= \frac{3}{\sqrt{2\pi}} \int_{\frac{1}{18}}^{\infty} -e^{-y} dy$$

$$= \frac{3}{\sqrt{2\pi}} e^{-\frac{1}{18}}$$

(2) Compare the Markov and Chebyshev bounds for the following probability distributions:

a)
$$p(x) = \begin{cases} 1, & x = 1 \\ 0, & \text{otherwise} \end{cases}$$

b) $p(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$

Solution:

For a), E(x) = 1, Var(x) = 0. So Markov inequality for a) is $Prob(x \ge a) \le \frac{1}{a}$, while Chebyshev inequality for a) vanishes to Prob(|x-1| > 0) = 0.

For b), $E(x) = \int_0^2 \frac{1}{2}x dx = 1$, $Var(x) = \int_0^2 \frac{1}{2}(x-1)^2 dx = \frac{1}{3}$. So Markov inequality for b) is $Prob(x \ge a) \le \frac{1}{a}$ (which is the same as in problem a)), while Chebyshev inequality for b) is $Prob(|x-1| > \sqrt{\frac{1}{3}}a) \le \frac{1}{a^2}$.

(3) Let *s* be the sum of *n* independent ransom variables x_1, x_2, \dots, x_n where for each *i*,

$$x_i = \begin{cases} 0, & \text{Prob is } p \\ 1, & \text{Prob is } 1 - p \end{cases}$$

How large must δ be if we wish to have $\operatorname{Prob}(s > (1 + \delta)n) < \epsilon$

Solution:

$$\begin{split} E(x_i) &= 1 - p, \ Var(x) = (1 - (1 - p))^2 (1 - p) + (0 - (1 - p))^2 p = p^2 (1 - p) + (1 - p)^2 p = p^2 - p^3 + p - 2p^2 + p^3 = p - p^2. \\ \text{So } Prob(x \geq a) \leq \frac{1 - p}{a} \text{ for each } i. \text{ So } E(s) = n(1 - p), \ Var(s) = np(1 - p). \\ \text{Applying Markov inequality we get } \operatorname{Prob}(x \geq n(1 + \delta)) \leq \frac{n(1 - p)}{n(1 + \delta)} = \epsilon. \text{ So } \delta = \frac{1 - p}{\epsilon} - 1 \\ \text{Applying Chebyshev inequality we get } \operatorname{Prob}(|s - n(1 - p)| > anp(1 - p)) \leq \frac{1}{a^2} = \epsilon. \text{ So } a = \sqrt{\frac{1}{\epsilon}} \\ \operatorname{Prob}(x < n(1 - p) - \sqrt{\frac{1}{\epsilon}}np(1 - p) \leq \epsilon. \text{ Therefore take } \delta \doteq 1 - (1 - p)(1 - \sqrt{\frac{1}{\epsilon}}p). \text{ We have for sure that } \operatorname{Prob}(x < n(1 - \delta) = \operatorname{Prob}(x < n(1 - p)(1 - \sqrt{\frac{1}{\epsilon}}p) \leq \epsilon. \end{split}$$

2 EXERCISE 2

(1) For what values of d do area, A(d), and the volume, V(d), of a d-dimensional unit sphere take on their maximum values?

$$A(d) = \frac{2\pi^{d/2}}{\Gamma(\frac{d}{2})}$$
$$\frac{A(d+2)}{A(d)} = \frac{2\pi}{d} \begin{cases} <1, \quad d \ge 7\\ >1, \quad d \le 6 \end{cases}$$

This means $\dots < A(11) < A(9) < A(7) > A(5) > A(3)$ and $\dots < A(10) < A(8) > A(6) > A(4)$. A(7) and A(8) are the largest A(d) for respectively odd d and even d. While $A(7) = \frac{2\pi^{3.5}}{\Gamma(3.5)} \approx 33.07$, and $A(8) = \frac{2\pi^4}{\Gamma(4)} \approx 32.47$. So $A(7) = \frac{2\pi^{3.5}}{\Gamma(3.5)}$ is the largest A(d) for every $d \ge 1$.

$$V(d) = \frac{2\pi^{d/2}}{d\Gamma(\frac{d}{2})}$$
$$\frac{V(d+2)}{V(d)} = \frac{2\pi}{d+2} \begin{cases} <1, \quad d \ge 5\\ >1, \quad d \le 4 \end{cases}$$

This means *V*(5) and *V*(6) are the largest volumes *V*(*d*) fo respectively odd *d* and even *d*. Turns out $V(5) = \frac{2\pi^{2.5}}{5\Gamma(2.5)} \approx 5.26$ (> *V*(6) ≈ 5.17) is the largest volume. (2) How do the area and the volume of a sphere with *radius*=2 behave as the dimension of the space increases? What if the radius was larger than two but independent of *d*? *radius*=2

$$A(d) = \frac{2\pi^{d/2}2^{d-1}}{\Gamma(\frac{d}{2})}$$
$$\frac{A(d+2)}{A(d)} = \frac{8\pi}{d} \begin{cases} <1, \ d \ge 26\\ >1, \ d \le 25 \end{cases}$$

This means A(26) and A(27) are the largest area A(d) fo respectively even d and odd d. Turns out $A(26) = \frac{2^1 4\pi^{13}}{\Gamma(13)} \approx 4.07 \times 10^5$ (> $V(27) \approx 4.04 \times 10^5$) is the largest area.

$$V(d) = \frac{2\pi^{d/2}2^d}{d\Gamma(\frac{d}{2})}$$
$$\frac{V(d+2)}{V(d)} = \frac{8\pi}{d+2} \begin{cases} <1, \ d \ge 24\\ >1, \ d \le 23 \end{cases}$$

This means V(24) and V(25) are the largest volumes V(d) for respectively even d and odd d. Turns out $V(24) = \frac{2^2 2\pi^{12}}{3\Gamma(12)} \approx 3.24 \times 10^4$ (> $V(25) \approx 3.21 \times 10^4$) is the largest volume.

As we can see from the previous analysis, both area and volume increase with respect to d for smaller d and decrease when d is large. And when radius is larger than 2, this boundary between increase and decrease will be larger, meaning $\operatorname{argmax}_d A(d)$ and $\operatorname{argmax}_d V(d)$ will be larger.

(3) What function of *d* would the radius need to be for a sphere of radius *r* to have approximately constant volume as the dimension increases?

$$V(d,r) = \frac{2\pi^{d/2}r^d}{d\Gamma(\frac{d}{2})}$$
$$\frac{V(d+2,r)}{V(d,r)} = \frac{2\pi r^2}{d+2} = 1$$
$$\therefore r = \sqrt{\frac{d+2}{2\pi}}$$
Then $V(d) = \begin{cases} \sqrt{\frac{6}{\pi}}, & d \text{ odd} \\ 2, & d \text{ even} \end{cases}$

3 EXERCISE 3

(1) For each of *a* = 2, and 3 give a probability distribution for a nonnegative random variable *x* were $\operatorname{Prob}(x \ge aE(x)) = \frac{1}{a}$.

Solution:

a=2:
$$p(x) = \begin{cases} 1/2, & x=2\\ 1/2, & x=0 \end{cases}$$
 $E(x) = 1.\operatorname{Prob}(x \ge aE(x)) = \operatorname{Prob}(x \ge 2) = \frac{1}{2} = \frac{1}{a}$
a=3: $p(x) = \begin{cases} 1/3, & x=3\\ 2/3, & x=0 \end{cases}$ $E(x) = 1.\operatorname{Prob}(x \ge aE(x)) = \operatorname{Prob}(x \ge 3) = \frac{1}{3} = \frac{1}{a}$

(2)

$$p(x) = \begin{cases} 1/a, & x = a \\ 1 - 1/a, & x = 0 \end{cases} E(x) = 1.\operatorname{Prob}(x \ge aE(x)) = \operatorname{Prob}(x \ge a) = \frac{1}{a}$$

4 EXERCISE 4

Suppose sphere 1 is centered at origin, while sphere 2 is centered at $ae_1 = (a, 0, 0, \dots, 0)$. The intersection becomes

$$\left\{ \begin{array}{c} (x_1-a)^2+x_2^2+\cdots+x_d^2 \leq 1 \\ x_1^2+x_2^2+\cdots+x_d^2 \leq 1 \end{array} \right.$$

Consider the cap of S_1

$$\begin{cases} x_1 \ge \frac{a}{2} \\ x_1^2 + x_2^2 + \dots + x_d^2 \le 1 \end{cases}$$

It's easy to see this cap is also contained in S_2 . $((x_1 - a)^2 + x_2^2 + \dots + x_d^2 \le (x_1 - a)^2 + 1 - x_1^2 \le (\frac{a}{2} - 1)^2 + 1 - (\frac{a}{2})^2 = 1)$ Likewise the cap of S_2

$$\begin{cases} x_1 \le \frac{a}{2} \\ (x_1 - a)^2 + x_2^2 + \dots + x_d^2 \le 1 \end{cases}$$

is also contained in S_1 . So by considering the volume of these two caps we can decide the volume of their intersection.

Applying the Lemma with the plane $x_1 = \frac{a}{2}$, $(c = \frac{a\sqrt{d-1}}{2})$ we get the fraction of the volume of the cap is below $\frac{2}{c}e^{-\frac{c^2}{2}} = \frac{4}{a\sqrt{d-1}}e^{-\frac{a^2(d-1)}{8}}$