Frame corners in tcolorbox

Senan Sekhon

April 14, 2023

This template provides tcolorbox styles for "frame corners", i.e. corner pieces of a frame.

These are fully customizable and compatible with other tcolorbox options, *except* that they cannot be rendered with the standard engine. As a result, any tcolorbox that uses any of these styles must also contain one of the following options:

enhanced jigsaw

bicolor jigsaw

enhanced

These styles are based on the tcolorbox package and the TikZ/PGF drawing engines.

bicolor

There are two classes of styles available in this template, the **frame corner** styles (which produce **sharp** corners) and the **frame rounded** corner styles (which produce **rounded** corners). They are to be called as follows:

frame corner type={ $\langle length \rangle$ }{ $\langle thickness \rangle$ }{ $\langle distance \rangle$ }{ $\langle corner color \rangle$ }{ $\langle edge color \rangle$ }

frame rounded corner type={ $\langle length \rangle$ }{ $\langle thickness \rangle$ }{ $\langle distance \rangle$ }{ $\langle radius \rangle$ }{ $\langle corner color \rangle$ }{ $\langle edge color \rangle$ }

The type refers to the corner of the box, which may be any of the eight keys outside the box below:

- The frame corner styles have 5 arguments, the first 3 of which are lengths and the last 2 are colors.
- The frame rounded corner styles have 6 arguments, the first 4 of which are lengths and the last 2 are colors.

In both diagrams, the \times marks the upper-left corner of the frame, i.e. the coordinate (frame.north west).

1 Sharp corners

The style frame corners all produces *all* corner pieces. Below is a complete example:

The following styles produce *one half* of a corner piece. For example, frame corner northwest left produces the *left* portion of the upper-left corner piece, while frame corner northwest top produces the *top portion*.

frame corner northwest left	frame corner northwest top
frame corner northeast right	frame corner northeast top
frame corner southwest left	frame corner southwest bottom
frame corner southeast right	frame corner southeast bottom

The following styles produce *one full* corner piece. For example, **frame corners northwest** produces the full upper-left corner piece (both the left and top portions).

frame corners northwest	frame corners northeast
frame corners southwest	frame corners southeast

The following styles produce two full corner pieces.

frame corners north	frame corners south
for an	
frame corners west	frame corners east
frame corners uphill	frame corners downhill

You can also combine options:

2 Rounded corners

The style frame rounded corners all produces *all* corner pieces. Below is a complete example:

\begin{tcolorbox}[enhanced,frame hidden, frame rounded corners all={5mm}{2pt}{1pt}{5pt}{blue}{white}] This is a \texttt{tcolorbox}.\\	This is a tcolorbox.
This is some additional text. \end{tcolorbox}	This is some additional text.

The following styles produce *one half* of a corner piece. For example, frame rounded corner northwest left produces the *left* portion of the upper-left corner piece, while frame rounded corner northwest top produces the *top portion*.

frame rounded corner northwest left	frame rounded corner northwest top
frame rounded corner northeast right	frame rounded corner northeast top
frame rounded corner southwest left	frame rounded corner southwest bottom
	-
frame rounded corner southeast right	frame rounded corner southeast bottom

The following styles produce *one full* corner piece. For example, **frame rounded corners northwest** produces the full upper-left corner piece (both the left and top portions).

frame rounded corners northwest	frame rounded corners northeast
frame rounded corners southwest	frame rounded corners southeast

The following styles produce two full corner pieces.

frame rounded corners north	frame rounded corners south
frame rounded corners west	frame rounded corners east
frame rounded corners uphill	frame rounded corners downhill

You can also combine options and add extra ${\rm Ti}k{\rm Z}/{\rm PGF}$ options:

<pre>\begin{tcolorbox}[enhanced,frame hidden, frame code={\draw (frame.south east) circle (1mm);}, % circle in the corner</pre>	
<pre>frame rounded corner northwest top={7mm}{5pt}{3pt}{green}{blue}, frame rounded corner northeast right={10mm}{1pt}{1pt}{12pt}{orange}{teal},</pre>	This is a tcolorbox.
<pre>frame rounded corner southwest left={10mm}{3pt}{6pt}{9pt}{violet}{white}] This is a \texttt{tcolorbox}.\\</pre>	This is some addi- tional text.
This is some additional text. \end{tcolorbox}	0

Note that the upper-right corner piece is partially hidden as the interior of the box is drawn over it. Adding interior hidden to the tcolorbox options or specifying interior $code=\{...\}$ will fix this.

3 Other examples

```
\begin{tcolorbox}[enhanced,frame hidden,interior hidden,
frame corners all={7mm}{2pt}{-4pt}{blue!50!black}{blue!10},
frame rounded corners all={7mm}{1.5pt}{0pt}{3pt}{red!50!blue!50!black}{blue!10},
frame rounded corners all={7mm}{1pt}{3pt}{6pt}{red!50!black}{blue!10},
1
For every non-negative integer $n$, we have:
\begin{equation*}
    \int_0^\infty x^ne^{-ax}\,dx=\frac{n!}{a^{n+1}} \tag{$a>0$}
\end{equation*}
Prove this by induction.
\end{tcolorbox}
   For every non-negative integer n, we have:
                                             \int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}}
                                                                                                     (a > 0)
   Prove this by induction.
\begin{tcolorbox}[enhanced,frame hidden,interior hidden,
frame corner northwest top={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner northeast right={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner southwest left={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner southeast bottom=\{7mm\}{2pt}{-6pt}{green!80!black}{gray!10},
frame rounded corner northwest top={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner northeast right={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner southwest left=\{12mm\}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner southeast bottom={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
Prove that:
\begin{equation*}
    \end{equation*}
\end{tcolorbox}
   Prove that:
                                                \sum_{n=1}^{\infty} \frac{n}{4n^4 + 1} = \frac{1}{4}
\begin{tcolorbox}[enhanced,frame hidden,interior hidden,
frame corners north={5mm}{2pt}{teal}{white},
frame rounded corners south={5mm}{2pt}{2pt}{10pt}{orange}{white}]
    \begin{tcolorbox}[enhanced,frame hidden,interior hidden,
    frame rounded corners uphill={3mm}{1pt}{4pt}{5pt}{violet}{white},
    frame corners downhill={3mm}{1pt}{4pt}{green}{white}]
    This is a \texttt{tcolorbox} within a \texttt{tcolorbox}.\\
    Both boxes contain \texttt{frame corner} and \texttt{frame rounded corner} options.
    \end{tcolorbox}
\end{tcolorbox}
       This is a tcolorbox within a tcolorbox.
       Both boxes contain frame corner and frame rounded corner options.
```