Frame corners in tcolorbox
 Senan Sekhon

April 14, 2023

This template provides tcolorbox styles for "frame corners", i.e. corner pieces of a frame.
These are fully customizable and compatible with other tcolorbox options, except that they cannot be rendered with the standard engine. As a result, any tcolorbox that uses any of these styles must also contain one of the following options:
enhanced bicolor enhanced jigsaw bicolor jigsaw

These styles are based on the tcolorbox package and the TikZ/PGF drawing engines.
There are two classes of styles available in this template, the frame corner styles (which produce sharp corners) and the frame rounded corner styles (which produce rounded corners). They are to be called as follows:
frame corner type $=\{\langle$ length $\rangle\}\{\langle$ thickness $\rangle\}\{\langle$ distance $\rangle\}\{\langle$ corner color $\rangle\}\{\langle$ edge color $\rangle\}$
frame rounded corner type $=\{\langle$ length $\rangle\}\{\langle$ thickness $\rangle\}\{\langle$ distance $\rangle\}\{\langle$ radius $\rangle\}\{\langle$ corner color $\rangle\}\{\langle$ edge color $\rangle\}$
The type refers to the corner of the box, which may be any of the eight keys outside the box below:

- The frame corner styles have 5 arguments, the first 3 of which are lengths and the last 2 are colors.
- The frame rounded corner styles have 6 arguments, the first 4 of which are lengths and the last 2 are colors.

Arguments for frame corner

Arguments for frame rounded corner

In both diagrams, the \times marks the upper-left corner of the frame, i.e. the coordinate (frame.north west).

1 Sharp corners

The style frame corners all produces all corner pieces. Below is a complete example:

```
\begin{tcolorbox}[enhanced,frame hidden,
frame corners all={5mm}{2pt}{1pt}{red}{white}]
This is a \texttt{tcolorbox}.\\
This is some additional text.
\end{tcolorbox}
```

The following styles produce one half of a corner piece. For example, frame corner northwest left produces the left portion of the upper-left corner piece, while frame corner northwest top produces the top portion.

| frame corner northwest left | frame corner northwest top |
| :--- | :--- | :--- |
| frame corner northeast right | frame corner northeast top |
| frame corner southwest left | frame corner southwest bottom |
| frame corner southeast right | frame corner southeast bottom |

The following styles produce one full corner piece. For example, frame corners northwest produces the full upper-left corner piece (both the left and top portions).

frame corners northwest	frame corners northeast
frame corners southwest	frame corners southeast

The following styles produce two full corner pieces.

You can also combine options:

```
\begin{tcolorbox}[enhanced,frame hidden,
frame corners northwest={5mm}{2pt}{5pt}{red}{white},
frame corners northeast={5mm}{2pt}{1pt}{green}{gray},
frame corners southwest={8mm}{1pt}{0pt}{blue}{yellow},
frame corner southwest bottom={5mm}{3pt}{6pt}{black}{red}]
This is a \texttt{tcolorbox}.\\
This is some additional text.
\end{tcolorbox}
```


2 Rounded corners

The style frame rounded corners all produces all corner pieces. Below is a complete example:

```
\begin{tcolorbox}[enhanced,frame hidden,
frame rounded corners all={5mm}{2pt}{1pt}{5pt}{blue}{white}]
This is a \texttt{tcolorbox}.\\
This is some additional text.
\end{tcolorbox}
```

This is a tcolorbox.
This is some additional text.

The following styles produce one half of a corner piece. For example, frame rounded corner northwest left produces the left portion of the upper-left corner piece, while frame rounded corner northwest top produces the top portion.
frame rounded corner northwest left \quad frame rounded corner northwest top

The following styles produce one full corner piece. For example, frame rounded corners northwest produces the full upper-left corner piece (both the left and top portions).
frame rounded corners northwest \quad frame rounded corners northeast

The following styles produce two full corner pieces.

You can also combine options and add extra TikZ/PGF options:

```
\begin{tcolorbox}[enhanced,frame hidden,
frame code={\draw (frame.south east) circle (1mm);}, % circle in the corner
frame rounded corner northwest top={7mm}{5pt}{3pt}{3pt}{green}{blue},
frame rounded corner northeast right={10mm}{1pt}{1pt}{12pt}{orange}{teal},
frame rounded corner southwest left={10mm}{3pt}{6pt}{9pt}{violet}{white}]
This is a \texttt{tcolorbox}.\\
This is some additional text.
\end{tcolorbox}
```

Note that the upper-right corner piece is partially hidden as the interior of the box is drawn over it. Adding interior hidden to the tcolorbox options or specifying interior code=\{...\} will fix this.

3 Other examples

\begin\{tcolorbox\}[enhanced,frame hidden,interior hidden, }
frame corners all=\{7mm\}\{2pt\}\{-4pt\}\{blue!50!black\}\{blue! 10$\}$,
frame rounded corners all=\{7mm\}\{1.5pt\}\{0pt\}\{3pt\}\{red!50!blue!50!black\}\{blue!10\},
frame rounded corners all=\{7mm\}\{1pt\}\{3pt\}\{6pt\}\{red!50!black\}\{blue!10\},
]
For every non-negative integer $\$ \mathrm{n} \$$, we have:
\begin\{equation*\} }
\int_o^\infty $x^{\wedge} n^{\wedge}\{-a x\} \backslash, d x=\backslash f r a c\{n!\}\left\{a^{\wedge}\{n+1\}\right\} \backslash \operatorname{tag}\{\$ a>0 \$\}$
\end\{equation*\} }
Prove this by induction.
\end\{tcolorbox\} }

For every non-negative integer n, we have:

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} \tag{a>0}
\end{equation*}
$$

Prove this by induction.

```
\begin{tcolorbox}[enhanced,frame hidden,interior hidden,
frame corner northwest top={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner northeast right={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner southwest left={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame corner southeast bottom={7mm}{2pt}{-6pt}{green!80!black}{gray!10},
frame rounded corner northwest top={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner northeast right={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner southwest left={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
frame rounded corner southeast bottom={12mm}{3pt}{0pt}{5pt}{violet!40!black}{gray!20},
]
Prove that:
\begin{equation*}
    \sum_{n=1}^\infty \frac{n}{4n`4+1}=\frac{1}{4}
\end{equation*}
\end{tcolorbox}
```

Prove that:

$$
\sum_{n=1}^{\infty} \frac{n}{4 n^{4}+1}=\frac{1}{4}
$$

```
\begin{tcolorbox}[enhanced,frame hidden,interior hidden,
frame corners north={5mm}{2pt}{2pt}{teal}{white},
frame rounded corners south={5mm}{2pt}{2pt}{10pt}{orange}{white}]
    \begin{tcolorbox}[enhanced,frame hidden,interior hidden,
    frame rounded corners uphill={3mm}{1pt}{4pt}{5pt}{violet}{white},
    frame corners downhill={3mm}{1pt}{4pt}{green}{white}]
    This is a \texttt{tcolorbox} within a \texttt{tcolorbox}.\\
    Both boxes contain \texttt{frame corner} and \texttt{frame rounded corner} options.
    \end{tcolorbox}
\end{tcolorbox}
```

This is a tcolorbox within a tcolorbox.

Both boxes contain frame corner and frame rounded corner options.

