Sum Squared Errors

Paul Glezen

August 2016

Abstract

A footnote in OpenIntro Statistics, 3rd Edition ${ }^{1}$, Section 5.5.2, Analysis of Variance (ANOVA), relates an identity for the sum of squared errors (SSE). $$
\begin{align*} \mathrm{SSE} & =\mathrm{SST}-\mathrm{SSG} \\ & =\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\cdots+\left(n_{k}-1\right) s_{k}^{2} \tag{1} \end{align*}
$$ where s_{i}^{2} is the sample variance for group i among k groups. This note fleshes out this identity in more detail.

1 Definitions

We define the following notation and definitions.
n - The number of elements in a sample.
k - The number of groups in the sample.
n_{j} - The number of elements in group $j, n=\sum_{j=1}^{k} n_{j}$.
x_{i} - The $i^{\text {th }}$ element in the sample.
\bar{x} - The sample average.
\bar{x}_{j} - The average of elements in group j.
s_{j}^{2} - The sample variance for group j.
SST - Sum of Squares Total $=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
SSG - Sum of Squares between Groups $=\sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2}$
SSE - Sum of Squared Errors $=$ SST - SSG

[^0]
2 Group Sample Variance

The sample group variance is calculated like any other sample variance, except that the calculation is restricted to a group. We'll designate $x_{i j}$ as element i in group j. Using this notation, the formula for the group average is $\bar{x}_{j}=$ $\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{i j}$. So

$$
\begin{equation*}
n_{j} \bar{x}_{j}=\sum_{i=1}^{n_{j}} x_{i j} \tag{2}
\end{equation*}
$$

This is often used in the calulations that follow. For the group variance of group j, we have

$$
\begin{align*}
s_{j}^{2} & =\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{x}_{j}\right)^{2} \\
& =\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}}\left(x_{i j}^{2}-2 x_{i j} \bar{x}_{j}+\bar{x}_{j}^{2}\right) \\
& =\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}} x_{i j}^{2}-\frac{2 \bar{x}_{j}}{n_{j}-1} \sum_{i=1}^{n_{j}} x_{i j}+\frac{\bar{x}_{j}^{2}}{n_{j}-1} \sum_{i=1}^{n_{j}} 1 \\
& =\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}} x_{i j}^{2}-\frac{2 \bar{x}_{j} n_{j} \bar{x}_{j}}{n_{j}-1}+\frac{\bar{x}_{j}^{2} n_{j}}{n_{j}-1} \\
& =\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}} x_{i j}^{2}-\frac{n_{j}}{n_{j}-1} \bar{x}_{j}^{2} \tag{3}
\end{align*}
$$

We will use this identity in the following section.

3 Sum of Square Total

Let $G_{j}=\left\{x_{i j}, i=1 \ldots n_{j}\right\}$ be the subset of $\left\{x_{i}\right\}$ for each group so that $G_{i} \bigcap G_{j}=\emptyset$ when $i \neq j$ and $\bigcup_{j=1}^{k} G_{j}$ is the whole sample. The sum of squares total can then be expressed as

$$
\begin{equation*}
\mathrm{SST}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{x}\right)^{2} \tag{4}
\end{equation*}
$$

The point of regrouping the sums is to combine terms in the sum of squared errors expression.

4 Sum of Squared Errors

Now we can express the sum of squared errors as

$$
\begin{align*}
\mathrm{SSE} & =\mathrm{SST}-\mathrm{SSG} \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}-\sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2} \\
& =\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{x}\right)^{2}-\sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2} \tag{5}\\
& =\sum_{j=1}^{k}\left[\sum_{i=1}^{n_{j}}\left(x_{i j}-\bar{x}\right)^{2}-n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2}\right] \\
& =\sum_{j=1}^{k}\left[\sum_{i=1}^{n_{j}}\left(x_{i j}^{2}-2 x_{i j} \bar{x}+\bar{x}^{2}\right)-n_{j}\left(\bar{x}_{j}^{2}-2 \bar{x}_{j} \bar{x}+\bar{x}^{2}\right)\right] \\
& =\sum_{j=1}^{k}\left[\sum_{i=1}^{n_{j}} x_{i j}^{2}-2 \bar{x} \sum_{i=1}^{n_{j}} x_{i j}+\bar{x}^{2} \sum_{i=1}^{n_{j}} 1-n_{j} \bar{x}_{j}^{2}+2 n_{j} \bar{x}_{j} \bar{x}-n_{j} \bar{x}^{2}\right] \\
& =\sum_{j=1}^{k}\left[\sum_{i=1}^{n_{j}} x_{i j}^{2}-2 \bar{x}\left(n_{j} \bar{x}_{j}\right)+\bar{x}^{2} n_{j}-n_{j} \bar{x}_{j}^{2}+2 n_{j} \bar{x}_{j} \bar{x}-n_{j} \bar{x}^{2}\right] \tag{6}\\
& =\sum_{j=1}^{k}\left[\sum_{i=1}^{n_{j}} x_{i j}^{2}-n_{j} \bar{x}^{2}\right] \\
& =\sum_{j=1}^{k}\left(n_{j}-1\right)\left[\frac{1}{n_{j}-1} \sum_{i=1}^{n_{j}} x_{i j}^{2}-\frac{n_{j}}{n_{j}-1} \bar{x}^{2}\right] \\
& =\sum_{j=1}^{k}\left(n_{j}-1\right) s_{j}^{2} \tag{7}
\end{align*}
$$

In step (5) we used the SST identity in (4). In step (6) we group average identity in (2). In the last step, we used the group variance expression from (3).

[^0]: ${ }^{1}$ Available at https://www.openintro.org/stat/textbook.php

