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Abstract. In this work we successfully applied diverse computational techni-
ques to calculate important quantities in one problem in Statistical Mechanics:
the hard disk system in two dimensions. We calculated the global and local ori-
entation order and the time decay constant of the global orientation correlation
function. We also computed the Voronoi construction to visuallize the spatial
distribution of the local orientation order.

Resumo. Neste trabalho apresentamos diversas técnicas computacionais no
cálculo de grandezas de interesse em um sistema de Mecânica Estatı́stica: dis-
cos rı́gidos em duas dimensões. Calculamos a ordem de orientação local e glo-
bal e a constante de decaimento da função de correlação da orientação global.
Fizemos também a diagramação de Voronoi para visualização da distribuição
espacial da orientação local.

1 Introduction

Solidification and vaporization of water are two commom examples of phase transitions
in physics. The temperature and pressure defines which phase the water is. Another
parameter called order parameter is used to verify which phase the system is. In the case
of the water it is the molecule organization: in the solid phase the molecules form an
ordered hexagonal state, in the liquid state the molecules are close to each other but with
no organization and in the gas state there is no correlation between the molecules. One
interesting system to study phase transitions is the hard disks in two dimensions [Isobe
and Krauth (2015)], composed of N disks of radius R confined in a 2D planar rectangular
box of sides Lx and Ly (see Fig. 1(a)). Each disk k has its center at position (xk, yk). The
superposition between two disks is forbidden so the minimal distance between them is
2R. One parameter is the local orientation of each disk k defined as [Deutschlander et al.
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(2014); Engel et al. (2013)]:

ψk(xk, yk) =
1

Nk

6∑
l=1

e6iθkl , (1)

where i =
√
−1 and the sum is taken over the six nearest-neighbors. The angle θkl

is between a line passing through the center of the two discs and the x axis (see Fig.
1(b)). The ψk is defined so that ψk = 0 in the liquid phase and ψk = 1 in the solid
one. The spatial distribution of the parameter through the volume is also important. The
order parameter can have different ranges defined by its dependency on the distance r
[Deutschlander et al. (2014)]: exponential decay e−r/ξ means short range, algebraic one
r−ξ means quasi-long range and a constant variation means a long range. So the liquid
state in the 2D hard disk system has short range and the solid state has long range for ψk.
However, a third phase was theoretical and experimentally observed: the so called hexatic
phase [Strandburg (1988)] (see Fig. 2(a)) and it has quasi-long range orientational order
[Bernard and Krauth (2011)]. The hexatic phase is an exclusive feature of 2D systems
[Isobe and Krauth (2015)].

1.1 Global orientation order

The global orientation is the absolute value of the average of the local one:

Ψ =

∣∣∣∣∣ 1

N

N∑
k=1

ψk

∣∣∣∣∣ . (2)

The phase of the system depends on the density η = (NπR2)/(LxLy) (see Fig. 2(a)). The
solid phase has an hexagonal symmetry (see Fig. 4(a)) and the liquid phase has random
positions for the disks (see Fig. 4(b)). We study the time behavior of the orientation order
correlation function:

C(δ) =

Q∑
t=0

Φ(t)Φ(t+ δ), (3)

which should be normalized so C(0) = 1. The normalized orientation order is Φ(t) =
Ψ(t) − Ψ∞ where Ψ∞ = limt→∞Ψ(t)1. The correlation function has an exponential
decay [Krauth and Wilson (2009)] of the form C(δ) ≈ e−t/τ where the decay time τ is a
function of the number of disks, τ = τ(N). This function depends of the phase:

τ(N) =


N logN, liquid phase

cNα, hexatic phase

N, solid phase

(4)

In this work we study the time decay τ of the global orientation in the liquid-
hexatic transition as function of N in the 2D hard disk system. We use different compu-
tation technique to evaluate the time evolution and the orientation order. The goal is to

1In practical terms, Ψ∞ = Ψ(t = Q) where Q is the number of evaluated Monte Carlo iterations.
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verify the exponential decay of the orientation order correlation function and then obtain
the behavior of the time constant as function of the number of disks N . To our kno-
wledge, and complete study of the τ as function of N in the hexatic-liquid coexistence
phase (0.70 < η < 0.716) has not been done.

a)
  

b)

Figura 1: (a) Illustration of the 2D hard disk system. (b) Illustration of the angle θjk
between two discs. This Fig. was taken from Ref. [Bernard (2011)].

a) b)

Figura 2: (a) Identification of the phase as function of the density η = (NπR2)/(LxLy).
For η < 0.700 the system is liquid (L), for 0.700 < η < 0.716 it is in the coexistence
between the liquid and hexatic (L-H) phases and for 0.716 < η . 0.720 the pase is
hexatic (H). For η & 0.72 the phase is solid (S). (b) Illustration of the movement in the
Event-chain algorithm. Collective move with the total displacement `. The Figures were
taken from Ref. [Bernard (2011)].

1.2 Simulation Method

We used two methods for the time evolution of the system. The first one is the Event
Chain Monte Carlo method [Michel et al. (2014)] where many disks move in sequence in
each iteration. Each disk moves until it reaches another disk (when their distance = 2R).
Then the first disk stops and the second one starts to move until it reaches the third disk.
The process repeats until the sum of the distances of all disks are equal to an input value
` [Krauth and Wilson (2009)]. The method is efficient because many disks move in one
iteration. The other method is the parallel Markov Chain Monte Carlo one, calculated with
the Hard Particle Monte Carlo module (HPMC) [Anderson et al. (2016)] of HOOMD-
BLUE package2 [Anderson et al. (2008); Glaser et al. (2015)]. This implementation has
been used in many type of problems including disks [Anderson et al. (2017)].

2glotzerlab.engin.umich.edu/hoomd-blue.

http://glotzerlab.engin.umich.edu/hoomd-blue
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To calculate ψk we need the distances between the disk k and all other disks. Using
brute force one requires N − 1 calculations. Then, to calculate the average Ψ, another
N calculations will be done with total of (N − 1)N ' N2 calculations when N is large.
The distances are also required in the time evolution of the system. We implemented this
algorithm in C language. However, for large N we used the method List of Cells [Frenkel
and Smit (2002)] which is faster. In this one a grid of N cells is created so there is one
disk per cell. When we need to get the neighbor of a disk, we just look into the neighbor
cells. The scaling of this method is N . We implemented this list of cells method in C++.

2 Results

Our C++ implementation is illustrated in the Algorithm 1. The distance calculations are
performed in the functions newL and abs_Psi, where the listcell structure is used
to identify the neighbor disk. The matrix LxLy keeps the positions x(t), y(t) of all disks
in the iteration t3. In the Fig. 3(a) there is a simple example of the list with 9 cells. To
get the neighbor of a disk, just check the neighbor cells (each cell has pointer pointing to
them and a linked list to keep the id of the disks). The Fig. 3(b) shows a comparison of
execution time between brute force and list of cells methods. For small N , brute force is
better because there is a cost to create the cell grid. However, for N = 1282 the list of
cells is already one order of magnitude better, and this improvement increases with N .

Algorithm 1 Time evolution with Event Chain Monte Carlo
1: procedure MCCE
2: Input: N, `, η, S,Q, Lx
3: listcell← CREATE LIST(N )
4: for k ∈ S do
5: LxLy← INITIAL(N , η, Lx)
6: ADD DISKS(N , listcell)
7: seed← k
8: for t ∈ Q do
9: LxLy← NEWL(LxLy, N, η, `, seed, listcell)

10: Psi(t)← ABS PSI(η, LxLy, listcell)
11: file← time Psi.csv
12: write(t,Psi,file)

In total, the code has six input parameters: (1) number of disks N , (2) the density
η, (3) the number of iterations Q, (4) the side Lx of the box, (5) the number S of samples
in order to take the average (and decrease the error) and (6) the total distance `. We used
S = 5, Lx = 100 and ` =

√
N and Q = 30 000 in all simulations. All the graphics

presented here were done in Python (Matplotlib package). The way to achieve the liquid
state configuration shown in Fig. 4(b) was to evaluate the system with Q = 200 iterations
and η = 0.5 using our C++ implementation and an initial hexagonal configuration (Fig.
4(a)).

3Although the concepts of the method and the definition of Ψ are not too complicated, the code itself
presents many numerical challenges [Bernard (2011)].
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Figura 3: (a) System with 9 cells, each one has pointer pointing to the neighbors and a
linked list. (b) Comparison between the two methods to calculate the distances between
the disks: brute force in blue and list of cells in red.
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Figura 4: Simulation with N = 322 and η = 0.5 using our C++ implementation. (a)
Initial configuration with triangular symmetry. (b) Configuration with t = 200.

The correlation functions C(δ) were calculated for N = 642, 1282, 2562 and 5122.
Due to time limitations we were not able to perform simulations with a larger number of
S. The results shown in the Fig. 5(a) were noisy. To find the decay constant it is needed
more samples. Another result is shown in the Fig. 5(b), which is a kind of graphic used
to visually identify the phases [Bernard and Krauth (2011); Engel et al. (2013)]. First a
Voronoi construction is created where each cell contains only one disk. Then, the local
orientation order ψk is calculated for each disk and a color coding is created. The disk
in each cell are removed and each cell are painted with the color of its disk orientation
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order [Bernard (2011)]. If ψk is alligned with Ψ we have cos θk = 1 and if they are
perpendicular cos θk = 0, using the associated vectors with ψk and Ψ. Note that in Fig.
5(b) there are N = 1282 disks. The number of sides of each cell is the number of its
neighbors cells. As the solid phase of the hard disk system has hexagonal symmetry, the
average number of neighbors cell is 6, which explains why most of the cells are hexagons.
As the density is η = 0.7, the configuration of Fig. 5(b) is liquid.

The functions of HOOMD-BLUE package are organized in modules, which
should be installed as regular Python packages (within Conda environment). The results
for C(δ) are shown in the Fig. 5(c) for η = 0.705 and N = 642, 1282, 2562 and 5122.
To calculate the decay time τ we adjust an exponential function f(δ) = A0 + A1e

−δ/τ to
the data. The blue circles in Fig. 5(d) are the obtained values of τ . The second step is
to determine α from Eq. 4. So we take the natural logarithm ln τ = B + α lnN (with
B = ln c) and make a linear fit for ln τ vs. lnN . The slope will be the constant α. Indeed,
they follow a linear behavior as the red solid line indicates in Fig. 5(d)4.
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Figura 5: Time behavior of correlation function C(δ) (Eq. 3). (a) Using our C++ im-
plementation. (b) Voronoi construction where each cell contains only one disk. (c) Using
HOOMD. (d) Linear fit of the decay τ vs. the number of disks N using the results from
HOOMD case.

4The code that generated the results presented here are available at github:
github.com/AndreyGFranca/mcec.

https://github.com/AndreyGFranca/mcec/tree/master/EAMC_2018
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3 Conclusions

We compute the correlation function of the orientation order in the 2D hard disk system
and verified its exponential behavior. We then obtain the expected behavior of the de-
cay constant τ as function of the number of disks N for η = 0.705. We successfully
applied various computation techiniques to this Statistical mechanical problem, showing
the great benefit which one can have from the interplay between Statistical Mechanics
and computational modelling.
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