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ABSTRACT. Calculating the value of C*€{1:2°} class of smoothness real-valued
function’s derivative in point of R* in radius of convergence of its Taylor poly-
nomial (or series), applying an analog of Newton’s binomial theorem and g¢-
difference operator. (P, q)-power difference introduced in section 5. Addition-
ally, by means of Newton’s interpolation formula, the discrete analog of Taylor
series, interpolation using g-difference and p, g-power difference is shown.
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1. INTRODUCTION
Let be Taylor’s theorem (see §7 ” Taylor’s formula”, [I])

Theorem 1.1. Taylor’s theorem. Let be n > 1 an integer, let function f(x)
be n + 1 times differentiable in neighborhood of a € R. Let x be an any function’s
argument from such neighborhood, p - some positive number. Then, there is exist
some ¢ between points a and x, such that

f'(a) f"(a) F(a)

o @ma) o (@) e T (3= a) + R (2)

(1.2) f(z) = fla)+
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where Ry11(x) - general form of remainder term

(13) Runa(o) = (£22) B2

Tr—a 'p
Proof. Denote ¢(x,a) polynomial related to = of order n, from right part of (1.2)),

(14)  glr.a)= fla) + 210

Next, denote as R;,+1(z) the difference

(1.5) Rpy1(z) = fz) — (2, a)

Theorem will be proven, if we will find that R,41(z) is defined by (1.3]). Let fix
some z in neighborhood, mentioned in theorem By definition, let be z > a.
Denote by t an variable, such that ¢ € [a, 2], and review auxiliary function (¢) of
the form

f"(a)

n!

(x—a)+¥(x—a)z+~'+

n

(x —a)

(16) B(t) = 1) — ple,) — (2 — QL)

where

(L7) Q) = )

More detailed 1 (t) could be written as

18) 60 = 1@ - 1) - L@ - LW g Sy
S —)

Our aim - to express Q(z), going from properties of introduced function ¥ (t). Let
show that function () satisfies to all conditions of Rolle’s theorem [2] on [a, z].
From and conditions given to function f(z), it’s obvious, that function ()
continuous on [a,z]. Given t = a in and keeping attention to equality ,
we have

(1.9) Pla) = f(z) — ¢(z,a) = Rnya(2)

Hence, by means of (1.5 obtain 1(a) = 0. Equivalent 1 (x) = 0 immediately follows
from (1.8). So, % (t) on segment [a, ] satisfies to all necessary conditions of Rolle’s
theorem [2]. By Rolle’s theorem, there is exist some ¢ € [a, x], such that

(1.10) ¥(c) =0

Calculating derivative ¢’ (t), differentiating equality (1.8]), we have

(1.11) W)= —f'(t) + fll(f) ~ f;(!t) @ty Lo gy

2!
(n) (n+1)
+f n|(t)n<x _ t)n—l _ f - (t) (.Z' _ t)n +p(x _ t)p_lQ(x)

It’s seen that all terms in right part of (L.11]), except last two items, self-destructs.
Hereby,

f(n+1)(t)

-+ p (- Q)

(1.12) P'(t) =
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Given t = ¢ in (|1.12)) and applying (1.10)), obtain
x —c)" Pl
(113) Q) = E=I ey

By means of (L.13) and (L.7), finally, we have
_ p _ o an+l
(114) Rn—‘,—l(m) = (g; — a)PQ(x) _ <$ Cl) (Jj nc) f(n+1) (C)

T —a 'p

Case z < a is reviewed absolutely similarly. (see for reference [I], pp 246-247)
This proves the theorem. (Il

Let function f(z) € C* class of smoothness and satisfies to theorem [1.1} then
its derivative by means of its Taylor’s polynomial centered at a € R in radius of
convergence with f(z) and linear nature of derivative, (¢f(z)+um(x)) = gf (x)+
um (2), is

"a "(a (k—1) a
(1.15) %f(x) = fl(! )%(xfa) + f2(! )(Zj(xa)2+~-~+w(gc(xa)k
+Rj (2)

Otherwise, if f € C* we have derivative of Taylor series [5] of f given the same

conditions as (|1.15])

_fd

() (g
(116) ) =T L)y /(@) d

n!  dx

(@) d
2! dx
+ e

Hence, derivative of function f:1 < C(f) < o0 E| could be reached by differentiat-
ing of its Taylor’s polynomial or series in radius of convergence, and consequently
summation of power’s derivatives being multiplied by coefficient, according theo-
rem [I.1] over k from 1 to ¢ < oo, depending on class of smoothness. Hereby, the
properties of power function’s differentiation holds, in particular, the derivative of
power close related to Newton’s binomial theorem [4].

(x—a)*+- -+

(z—a)"+

Lemma 1.17. Derivative of power function equals to limit of Binomial expansion
of (x + Ax)", iterated from 1 to n, divided by Az : Ax — 0.

Proof.

(118) A = {Z (Z) x”’“mm)“} = (T)

k=1

O

According to lemma ([1.17), Binomial expansion is used to reach derivative of
power, otherwise, let be introduced expansion, based on forward finite differences,
discussed in [3]

(1.19) " =a""2 4 Z ko2 —k2.2" 3 zeN
ke€(x)

IFor example, let f be a k-smooth function, then C(f) = k.
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where j = 3! and €(z) :={0, 1, ..., z} CN. Particularimﬂ , one has
(1.20) 2= > jekea" =k
kesl(x)
where {(z) :={0, 1, ..., x —1} CN.
Property 1.21. Let &(x) be a set S(x) := {1, 2, ..., x} C N, let be
written as T(x, U(x)), then we have equality
(1.22) T(xz, Mx)) =T(z, &(z)), z €N
Let be denoted as U(z, €(x)), then
(1.23) Uz, €x))=U(z, 6(x)) =U(z, M)

Proof. Let be a plot of jkx" 2 — jk2z" 3 + 2" 3 by k over R;O, given x = 10

I I I I
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L o100 |
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Figure 1. Plot of jkx"~2 — jk?2"=3 4+ 2"~ by k over R;lo, x =10

Obviously, being a parabolic function, it’s symmetrical over §, hence equivalent
T(x, Wz)) = T(z, 6(x)), v € N follows. Reviewing (1.19) and denote u(t) =

taz"=? — 22773 we can make conclusion, that u(0) = wu(z), then equality of
Uz, €(z)) =U(z, 6(z)) =U(z, Mx)) immediately follows.
This completes the proof. (I

By definition we will use set 4(z) C N in our next expressions.
Since, for each z = g € N we have equivalent

Lemma 1.24. Vo = 2y € N holds

T n x—1
(1.25) > <Z)t"‘k = jokoa" =gk
t=1 k=1 k=0

xmn

2Transferring 2™~ 2 under sigma operator, decreasing the power by 1 and taking summation
over k € (x)
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Proof. Proof can be done by direct calculations. O

By lemma we have right to substitute (|1.20]) into limit (1.18]), replacing Bi-

nomial expansion, and represent derivative of power by means of expression (|1.20)).
Note that,

1.26 Az") = A B A B B Lk B
k
k=1

As (1.20) is analog of Binomial expansion of power and works only in space of
natural numbers, different in sense, that Binomial expansion, for example, could
be denoted as M(x, €(n)), where n - exponent. While could be denoted
T(z, U(z) = S(x)), it shows that in case of Binomial expansion the set over which
we take summation depends on exponent n of initial function, when for (1.20)
it depends on point x = zg € N. To provide expressions’ usefulnes
taking power’s derivative over RT, derivative in terms of quantum calculus should
be applied, as next section dedicated to.

2. APPLICATION OF Q-DERIVATIVE

Derivative of the function f defined as limit of division of function’s grow rate
by argument’s grow rate, when grow rate tends to zero, and graphically could be
interpreted as follows

Y

f(z)

tangent line at g as Az — 0%
f(zo + Ax)

f(xo)

Figure 2. Geometrical sense of derivative

In 1908 Jackson [10] reintroduced [I1], [12] the Euler-Jackson ¢-difference operator
9l

_ f(@) - flgz)
(2.1) (Dgf)(x) = T—gz " #0
The limit as ¢ approaches 17 is the derivative
a .
(2.2) G = Jim (D,f)(@)

3By classical definition of derivative, we have to use upper summation bound (x + Az) € Rt

on |j which turns false result as li works in space of N.
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More generalized form of g-derivative

g e St
q q
(Dqf7)(x) (Dg fH)(x)

where (D, f7)(z) and (D, f~)(x) forward and backward g-differences, respectively.
The follow figure shows the geometrical sense of above equation as g tends to 17

Y

f(z)
tangent line at xgp as ¢ — 17

f(zo-q)

f (o)

T

Figure 3. Geometrical sense of right part of ([2.3)

Review the monomial ", where n-positive integer and applying right part of (2.3]),
then in terms of g-calculus we have forward ¢-derivative over R

dlz™) . + . (g™ — 1)
dzr q—1+ q—1t :r(q - 1)

(2.4)

n—1
= lim x"_Iqu, qeR
k=0

qg—1t

Otherwise, see reference [9], equation (109).
Generalized view of high-order power’s derivative by means of (2.4))

VACA N IURRI & £ g
(2.5) o = lim (Dfe" (@) = Tm 2" F T (D
7=0 \m=0

q—1t q—1+t

Since, the main property of power is

Property 2.6.

n n n

(z-y)" ="y
Let be definition
Definition 2.7. By property (2.6) and (1.20]), definition of c=z-t:t € R, = €
N = ce€R topower n e N
x—1
(2.8) =L t)y = Y jka T A" — R g g g
k=0

Hereby, applying definition (2.7) and (2.4), derivative of monomial z™ : n € N
by x in point zg € N is
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m f(l‘, Q)n—f(l‘, 1)71 = lim f(ﬂ?, 1)n_§(x’ Q)n

dx g1+ T-q—w q—=1- x-q—x ’

Dy lzm] EDycr[zn]

Let us approach to extend the definition space of expression (2.9)) from 2y € N to
xo € RT. Let be zg = &(tg, p)1 € RT Z Nasp € RT 2 N and tg € N, then
applying (p, q)-difference discussed in [13]

(2.10) Dy qgf(x) = W, x#0

by means of definition (2.7)) and (2.10)), (p, ¢)-differentiating of monomial 2™, n € N
gives us

d(z" n ) n
(2.11) il D, 2" = lim 8@, pn = £z, 9)
R R p—qt T-p—x-q
déf [xn]
= fim HE P E@ Dn o g eRY 2N
q—p~ T-p—T-q

def
=9 peqlz”]

Geometrical interpretation is shown below

Y
f(z) =a"
§(T0, PIn fommm e ‘ tangent line at xg as p — ¢*
|
|
|
1
5(960, Q)n ””””” }
i i
0 To - q To P r

Figure 4. Geometrical interpretation of (2.11))

3. APPLICATION ON FUNCTIONS OF FINITE CLASS OF SMOOTHNESS

In this section we will get derivative of function f € C™ in point 2y € RT by
means of its Taylor’s polynomial and , where n - some positive integer. Let
f(z) be an n-smooth function, then derivative of its Taylor’s polynomial at radius
of convergence with f in zg: (zg —a) € Nis

(3.1)

") (g
=3 [E 00l - )] + Fpos B (o)
=xq k=1 '

x

" TR (g
= Z [fkl()qu[(x - a)k]] + Zg<1[Rnga (2))]
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Otherwise, let (vo — a) satisfies to conditions of (2.11)), i.e (zg — a) € RF, then
applying operator 2, defined in we can reach derivative of f : f € C™ in
point xg : (g — a) € R, by differentiation of its Taylor’s polynomial in radius of
convergence with f, that is

df (x)

dx

" *) (g
(3:2) - Z [f k!( )gp—w[(m - a)k}] + Dp—q Rt (2)]

n TR (g
=> {fkf)%w[@f - a>’“}] + Dpeq[ Rui1 ()]

4. APPLICATION ON ANALYTIC FUNCTIONS

If f € C* (i.e analytic), then approximation by means of Taylor series holds in
neighborhood of its center at a € R. Suppose that f is real-valued and satisfies to
conditions of Taylor’s theorem then derivative of f at zp: 2z < xg < a is

df (x d & k) (g > r(K)(q) d
(4.1) J;(x) de’;)fk!()(x—a)kz LZ_Ofk!()dx(m—a)k

T=T0

Let xo satisfies to conditions of (3.1)), then, applying definition (2.7), we have de-
rivative of f in point zo € R

- (k) (g (k) (g
(1.2 dj;;llzf e -0 =3 .”@qﬂm—a)’“]]

k=1 : k=1

Otherwise, if x( satisfies to conditions of (3.2) and z in radius of convergence with
f, then derivative of f € C'*°, by means of its Taylor’s series and ([2.7)), is

2 [ (g 1) (g
ay YO [Zf @) gl — a1 =30 I )-@peq[(x—a)k]]
k=1 k=1

I:to

5. INTRODUCTION OF (P, ¢)-POWER DIFFERENCE

Lemma 5.1. Let be m € R/I and m could be represented as m = at, then exists
some ¢ € R/I, such that

(5.2) m = a’

Reviewing ([2.3]), we can see, that argument’s differential Az is given by x-q — x,
according to lemma JeeR/I, -t —x =2a°— z, then, from (2.4) immediately
follows g-power difference, (see [14], page 2, equation 3)

fa) — f(a")

o —

(5.3) Dys1 f(x) = 240

As g tends to 1T we have reached derivative

df (x)
dx

(5.4) = lm Dot f(x) = lim f@?) - f(=h)
q—1+

g1+ x1—zl

LD o [f ()]
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I [ i

=: lim D T
g—1- xl — pa g1 q<1f( )

D, [f(2)]

where lim D, f(x) denotes the derivative through backward ¢-power difference
q—1—

By lemma from (2.10) immediately follows (p, ¢)-power difference
f(a?) — f(a)

(5.5) Dypsqf(z) == 2P — 24

, ©#0

Hence, for v = 2P, p € R

56) Y0 )= tim Dy0p(@) = tim LI
D, glf(2)]

fa?) = f(z?)

=: lim D
20 — 2P q_lglf b ()

dépof—q [f ()]

where Dy,_4[f(x)], Dpeyqlf(z)] denote derivative through forward and backward
(p, q)-power differences. Let us to show geometrical interpretation of (5.4)) and (5.6))

Y

f(=)

tangent line at 2o as ¢ — 17

X

Figure 5. Geometrical sense of (5.4))

/()

tangent line at z¢ as p — ¢

T

Figure 6. Geometrical sense of (5.6
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Applying (5.4) with monomial 2™ : m € N, we get

(5 7) d(.’L‘m) -D [xm] — lim i(l,q)m—k -.Tk_l _ mmm—l
' dx 7>1 qg—1+ 1
m
= lim Dyq[z™] = lim l zht. (xq)m_k] = ma™ !
q—1- q—1- 1

Note that Dy<1[2™], Dg>1[z™] defined by (5.4). The high order N < m derivative,
derived from ({5.7)

N ™ N—-1 /m—j .
(5.8) % D51V>1[ m} = lim (Z(xq)mk . xkgl)

qg—1t 7

fDé\;l M = lim H (Zxk I (g™ k)

q~>1*

Let be analytic function f and let f satlsﬁes to Taylor’s theorem [I.I] on segment of
(a,z), a € R, then, applying (5.4), in radius of convergence of its Taylor’s series,
we obtain derivative

T > FK)(q (k)
RO L2 o e D D e Ll Y PR
k=1 k=1

Using Dy q[f(2)], Dpeyq[f(x)] defined by (5.8)), for each v = xP, we receive

o [ 10 (g o () (g
o) P [Z ! k,( ID, (o — a)f) = Zf,gf)DpHKxa)’“J]

k=1 ’ k=1

Or, by means of definition and (5.9), when (z¢ — a) € N derivative could be
taken as follows
(5.11)

dj;(;) = Z { ! k!(a) - lim kzzjlf(x —a, Vpm-nk® - &(z —a, l)klx’}

—1+
k=1 "

T=T0
Given zg, such that (xo—a) € RT, then conditions of (3.2) is reached, and, applying
definition (2.7)), derivative f’ follows
(5.12)

df (z = *)(q

S {0 3 D el

n—)l+

ZE:tO

Otherwise, let be f: f € C™, where n - positive integer, then under similar condi-
tions as (5.11)) and (5.13)), derivative could be reached by differentiating of n-order
Taylor’s polynomial of f in terms of g-power difference (|5.3) under limit notation
over n

(5.13) df( ):Z{f k'( ) lim (m_a)nm—nkx/.(x )k 1 l}+Rn+l( )

dzx 1+
k=1 [
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Similarly, as (5.13]), derivative of f € C™ in point « = xq, such that (zg —a) € N
(5.14)

d{i(x) - Z {f k!( . lim ;ﬂx_ a; Vpm—nrt’ - §(x —a, 1)k—1$,} +R, 4 ()

n—1+
k=1

T=Tq

Otherwise, going from (5.14), V(zg — a) € RT
(5.15)

% - Z { ! k;!(a) - lim ;5@ —a, Vpm—nr2’ - &(z — a, 1)k—1xl} +R ()

n—1+
k=1

x=tg
6. NEWTON’S INTERPOLATION FORMULA

Being a discrete analog of Taylor’s series, the Newton’s interpolation formula [6],
first published in his Principia Mathematica in 1687, hereby, by author’s opinion,
supposed to be discussed

(6.1 =3 (", ")akr)

Given ¢ = const in (2.3)) divided g¢-difference f[zq; z] is reached. Let be Af =
flzq; z](xq — ), then, by means of generalized high order forward finite difference
AFf k> 2, ([T, [§]), revised according to (2.3), Newton’s formula (6.1)) takes the
form

(6.2 f@) =Y [( ) fj(—l)m(’,j)f(x - t’")]

k=0 m=0
Review (b.4) and given ¢ = const divided g-power difference follows, by similar way

as reached, could be written as
[e'S) k
(6.3 fl) = [( R PNCIE (Z)f(w”m)]

7. CONCLUSION

In this paper was discussed a way of obtaining real-valued smooth function’s
derivative in radius of convergence of it’s Taylor’s series or polynomial by means of
analog of Newton’s binomial theorem in terms of ¢-difference and (p, q)-
power difference operators . In the last section reviewed a discrete analog of
Taylor’s series - Newton’s interpolation formula , and applying operators of
g-difference, (p, g)-power difference interpolation of initial function is shown ,

63).
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