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Suppose one has the integral

[eS)
1
/0 xln T dzx

How would it be integrated over the given interval? There is a property which
allows for a function to be expressed as the constant e raised to the power of
the natural logarithm of that function,
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This can be applied to the very same integrand in the integral fooo - —
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~Inz and using the exponential property, it is shown to
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Using the property of the natural log function

In(a’) = blna

. —Ina
the function e ) can be expressed as such,
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Taking the original integral fooo dx and substituting the integrand with the
derived expression, the integral can be represented as
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This problem can now be solved with integration by parts. One can substi-
tute In x for arbitrary variable u such that
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Therefore du = % for the logarithmic derivative of x is %, and it can be said
that
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From this, the original integral can be shown to be
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2, one can complete the square to get the following,

Taking the expression v —u
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and therefore dv = 1 since d%u =1 and %% = 0. It can be concluded that

dv = du, and substituting v into the integral, one has
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and when et is factored out,
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A factor of of @ can be added to the outside of the integral and its reciprocal
% to its inside. Now the integral becomes
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The Gauss error function erf(v) is defined as

erf(v) = %/0 et dt

Or as an indefinite integral form,
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This definition can be substituted into the previously derived equation to be-
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The substitution v = u — % can be undone to get
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and since it was stated earlier that « = Inx, u also can be undone and substi-
tuted back in to the equation,
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This can be simplified to
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and further simplified to
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The limit of the Gauss error function erf(z) as  approaches infinity, is

lim erf(z) =1
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and the limit of that function as x approaches negative infinity equals
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Therefore, erf(co) = 1 and erf(—o0) = —1, and plugging this into the equation,

it becomes
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which simplifies to

From this it can be said that
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