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Problem 1

(a) Assume that output y(¢f) = h (a constant) in the steady state and A < 0. In the steady state,
the state variable z does not depend on time anymore, ie., z(t) = $x(t) = 0. Therefore, the
state-space equations becomes:

0= Az + Bu (1)
h=Cz (2)
Therefore, u(t) = —4x(t) = —Z5h, which proves the required claim.

(b) With the steady state controller u(t) = *CAB}% we can solve the state-space equations by using
Laplace transform. Indeed, we substitute u(t) = —C‘iBh into the state equation and define z(t) =
z(t) — L, the state equation becomes:

2(t) = Az(t) 3)
So, by applying Laplace transform and inverse Laplace transform which is also shown as follows,
we get:
Llz(t)] = L[A=(1)]
sZ(s) —z(0) = AZ(s
z(0)
7(s) =
() s—A
-1 _1p 2(0)
Z =
ez = e 2
2(t) = eAt2(0)
h h
#(t) - g = M(@(0) - )
h
o(t) = (1 - )
Thus,
y(t) = Ca(t) = h(1 — &™) (4)
for ¢ > 0.



For A <0,
. 1 At
tlggo y(t) = tli)rgoh(l ™)
=h
(¢) For A >0,

lim y(t) = tlgrolo h(1 — ™) € {00, =0, 0}

t—o00
depending on whether h is negative, positive or zero, respectively.

(d) Simulation using MATLAB Simulink:
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Figure 1: MATLAB Simulink Configuration for (A, B,C,h) = (—2,1,1,0.5)
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Figure 2: The time response plot for (4, B,C,h) = (—2,1,1,0.5)

These plots confirm the correctness the results of the output y(¢) in the steady state derived in part (b)
and (c).
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Figure 3: MATLAB Simulink Configuration for (A, B,C,h) = (2,1,1,0.5)

Problem 2
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Figure 4: The time response plot for (A, B,C,h) = (2,1,1,0.5)

(a) Given the hard disk drive equations, that is,

we can develop a state equation by choosing x(t) = 0, | @ state variables, u(t)
2

variables and y = 65 as output variable. For this choice

1101 + b(6y — 02) + k(01 — 62) = M. + Mp
Iy + b(By — 61) + k(03— 6,) =0

01

01

0

()
(6)

| Mc .
= [ MD:| as Iput

, the state equation for this system is:



6, 0 1 0 1 0 0
A S
G 0 0 0 1 0 0
6> T "L 0 0
= Ax + Bu
y:[() 0 1 O]X—i—O.u
=Cx
0 1 0 1 0 0
k _b kb 11
where A= | o o B B= | Gl andC=[0 0 1 0]
k b k b
L L L 0 0

(b) For Mp = 0,b =0, and y = {zl] as output variables, let u = M as input variable.
2

state-space equations become

The

x = Ax + Bu
y=0Cx
0o 1 0 1 0
k k 1
-—= 0 + 0 = 10 00
_ T T |7 — — ;
where A = 01 0 01 1 , B = 01 , C = [O 0 1 O],andu—Mc. Taking Laplace
k. —_k 9
T Ts

2
transform both sides of the state-space equations gives the transfer function as follows

_Hl (S)
H(s) = _Hg(s)]

_Yl(s)
Ul(s
= Yz((s))‘|
L U(s)
=C(sI-A)"'B

[(1/1)s*+k/(I115)
st+(k/11)s?

k/(I113)
st+(k/11)s?

Problem 3

Assume that the system is operating about the equilibrium point (xg,ue) = (0,0) and the variations of
f(x(t),u(t)) around the equilibrium point is sufficiently small. Then we can write x(t) = x¢ + dx(¢) and

u(t) = ug + du(t).

Recall the vector equation %(t) = f(x(t),u(t)), each equation of which #;(t) = f;(x(¢),u(t)) can be

expanded using Taylor series expansion as

i(l‘ol‘ + (5131) = fi(XO + 5X(t), ug + 6u(t))

dt
ofi
ox

dfi
ou

ju

u=ug

0x +

X=Xpo

~ fi(x0,u0) +

(7)
®)

The variations should be small enough for this approximation to hold. Since %xm = fi(x0, 1), we thus

have

Afi

u ou

u=ugp

0x +

X=Xq

9)



2

Combining all n state equations noting that we replace ”a” by ”=" in (9), gives

o [ on
ox | ou |
X=X u=uo
d > ofa
ox ou
—ox = X=%o0 | §x 4 u=lo | ju (10)
Ofn Ofn
ox | ou | _
L X=X | L u=ug |
— Adx + Bou (11)
of oK ... OfL ofh oK ... Of1
oz, Oxo oL, Ouy dua duy,
9f2  9f2 ... Of of2 8fs .. Of2
0. o Oxy, 0 0 Ounp,
where A = | 7" i ’ and B= | " “ “
Ofn  Ofn ... Ofn Ofn  Ofn ... Ofn
oxq Oxo Oy X=xXgo ouq Ous OUn, u=ug

Since x(t) = xg + 0x(t) = dx(t) and u(t) = up + du(t) = du(t), (11) becomes
x(t) = Ax(t) + Bu(t)

Problem 4

I T
(a) Choosing x = 52 = g as state variables, y = [g} as output variables, and u = {Z’} as input
3 9
T4 0

variables gives the nonlinear state space equation as

7 7
. 7 ré? — k/r? 4+ u,
x= 14 =f(x,u) = ; (12)
0 —270 /7 + ug /1
To
(b) Let k = rjw?, we check that xo = wO . and ug = [8} is one solution to the state space equation
0
wo
0 0 0
2 7.7.2
(12). Indeed, we can easily see that %o = 0 and f(xg,up) = rowp — k/r" 401 _ 1 0 . So,
wo wo wWo
0 —2(0)wo /10 + 0 0

%o = f(x0,ug). We now can obtain a linearized system around the point (xg,ug) by using derived
equations from Problem 3. That is,

0% = Aéx + Bdu

oy = Cox
where
ofh  Of .. Ofr
dx1  Oxa Ox4 0 0 0 0
9f 9f2 ... Of 9
A— Ox Oxo O0xy o 3w0 0 0 27’0(4}0

o o 0 0 0
Ofs 0fs ... O 0 —2wo/ro 0 0
dz1  Oxo O0za ] |x=x¢



ofi  9fa

duy dug 0 0

ofr  0f L0
B — 8u1 auz —

Ofs Ofs 0 0

8’U,1 auz

ofi  ofi 0 1/

Our  Ouzd ly=yg

Problem 5

The system in Figure (a) is linear and the system in Figure (b) and (c) are non linear. In Figure (a),
y(t) = f(z(t)) = kx(t) for some non-zero k which satisfies additivity and homogeneity properties for a
linear system. In Figure (b), y(t) = f(z(t)) = kx(t) + yo does not satisfy the additivity condition, that
is, f(z1(t) + 22(t)) = k(x1(t) + 22(t)) + yo # f(x1(2)) + f(22(t)) = kx1(t) + kxa2(t) 4+ 2yo. In Figure (c),
the graph is a nonlinear curve.

In Figure (b), the system with output 4(t) = y(t) — yo = g(u(t)) = ku(t) is linear.

Problem 6

Let f : u(t) — y(t) be the transfer function in the time domain and denote indicator operator 1(.) whose
value is 1 if its argument is true; otherwise, its value is zero.

(a) Linearity
e Additivity

for any inputs uq(t) and us(t).

e Homogeneity

for any constant k and input wu(t).
Therefore, the system is linear.
(b) Time-Invariance

Consider input u(t) =1,0< T < «a, and y(t) = f(u(t)) = 1(t < ). We thus have y(t — T) =
1t —T < a) = 1(t < a+T). In the other hand, f(u(t — T)) = f(1) = 1(¢t < «)). Since
flu(t—=T)) #y(t —T), the system is time-variant.

(¢) Causality

The output does not depend on future inputs, so the system is causal.



Problem 7

Consider the following network

:——-H 1 | — :-'F X2 =
u —RXI ~L, " I( A
R |+ B CZ C;X: + T"’
+
Xy .\ L L y
g4
- l - TCUEI © _l i—

Figure 5: The circuit network

Applying Kirchhoff’s current law at node A yields Cyds = x3, at node B yields “5 = Ciiy + Coiy =
C121 + x3. We thus have

. -1 —1 U
N = MRe, Te T RG,
. 1

T = Qfga

Applying Kirchhoff’s voltage law to the right-hand-side loop yields x1 — xo = Li3, or
y=Lrs =11 — 12

T

Choosing x = |x2| as state variables, u as input variable, and y as output variable gives the state space
T3

equations for the system

“1/RC; 0 -1/Cy 1/RCy
X = 0 0 1/Cy | x+ 0 U
/L  —1/L 0 0

y=[1 -1 0]x+0u

Assume zero initial state values and take Laplace transform both sides of the state space equations, we
have

sX(s) = AX(s) + BU(s)

Y (s) = CX(s)
Therefore, the transfer function is
_Y(s)
H(s) = U6s)
_ OX(s)
-~ U(s)
=C(sI—A)'B
_Rlc1 s?




Problem 8

Consider the discrete-time system represented by the difference equation

y(k+3)+2y(k+2)+3y(k+ 1) + y(k) = u(k)

y(k +2)
Choosing x(k) = |y(k + 1) | as state variables, u(k) as input variable, and y(k) as output variable gives
y(k)
the following state space equations
[y(k + 3)
x(k+1)= |ylk+2)
ly(k+1)
[—2 -3 -1 1
|1 0 0|x(k)+|0]|ulk)
0o 1 0 0
y(k) = [0 0 1] x(k)
or
x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)
-2 -3 -1 1
where A= | 1 0 01,B= O,CZ[O 0 1],andD=O.
0 1 0 0

The transfer function can be obtained by directly applying Z-transform to both sides of the difference
equation

Y (2)23 +2Y(2)22 +3Y(2)2 + Y (2) = U(2)

So, the transfer function is

Y(z)
H =
(2) UG
- 1
3422243241
Problem 9
(a) Consider the transfer function
R Y (s kw%

CU(s) 824 28wps +w?
Taking inverse Laplace transform both sides of the transfer function gives

4 26wy + wly = kwlu

By choosing x = [Z} as state variables, u as input variable and y as output variable, we have



(b) With the transfer function,
i(s) = Y (s) s+a
= U(s) 82+ 28wps +w?

the differential equation becomes

i+ 26wy + wihy = i+ au

Y
Now, choose x = |y | as state variables, u = [zﬂ as input variable, and y as output variables. We
U
thus have
E
x= i
K
0 1 0 0 0
= |-w? 2w, alx+ [0 1|u
| 0 0 0 0 1
y=[1 0 0]x+0u
Problem 10
Y1 u y
First, choose x = |41 | as state variables, u = [ul} as input variables, and y = [yl} as output variables.
2 2
Y2

The state-space equation of the system is

Y1
%= |4
| Y2
[0 1 0 0 0
=|—-ke —ki O |x+ |1 k3|u
| 0 —ks —ky ke O
1 0
y—_O 0 1x—l—O.u



