
A System Design Language Primer

Prof. D.S. Cochran

Revision 1.51
February 19, 2018

A System Design Language Primer

Introduction

Axiomatic Design is a design approach used to ensure that the resulting design (system) is both functional

and process capable.1 This methodology utilizes two axioms to guide the design process, and each one serves

a key role in the development of a design. The first axiom, the Independence Axiom, guides the decomposition

of the design, while the second axiom, the Information Axiom, gives a method to ensure the most capable

design is chosen.

• Design Axiom 1: The Independence Axiom
Maintain the independence of the functional requirements (FRs).

• Design Axiom 2: The Information Axiom
Minimize the information content of the design.

A System Design Language

A System Design Language provides a means of communicating a design and an approach to determine

the effectiveness of a design before it is built. This design language helps to guide the decomposition of the

design by asking the right questions at the right time. See Fig. 6 for a visual representation. The process of

defining system requirements, communicating these requirements and their chosen solutions, and determining

the effectiveness of the system follows the following format:

1. System Boundary

The first step to the system design process is to understand who/what the designer can and cannot control.

Fig. 1 provides an example of system boundary diagram. The diagram shows that the product/system being

developed has a mechanical and electrical subsystem. The mechanical subsystem must interface with a

preexisting mount and customer tooling. The mount and tooling cannot be altered which puts them outside of

the system boundary. The electrical subsystem must interface with the mechanical subsystem in addition to a

Programmable Logic Unit (PLC) and a user/operator. Therefore, the PLC and the operator are outside of the

system boundary.

Figure 1: Example of a system boundary diagram

1Suh, Nam P. Complexity: Theory and Applications. Oxford: Oxford UP, 2005. Print.

2

A System Design Language Primer

2. Domains

Before mapping the system design, the needs of the customer must be understood. Understanding the needs

of the customer and translating them into the functional domain is the first step in defining the requirements

of the system. From here, the physical/solution domain is mapped to the functional domain. See Fig. 2 for

an overview of the various domains and how they interface with one another. With any system design, the

customers and their needs should be clearly defined before defining the requirements of the system.

Figure 2: The system design domain

3. Key Questions

• "What" must be achieved? =⇒ Functional Requirement (FR)
The FR ALWAYS begins with a verb; improve, develop, reduce, provide, etc... FRs represent what the

system designers determine the system must achieve. Think of an "action" or "transformation" that must

take place.

• "How" will we achieve the FR? =⇒ Physical Solution (PS)
The PS ALWAYS begins with a noun; System, Component Selection, Color Choice, etc...

Figure 3: Example of a design relationship

3

A System Design Language Primer

4. Performance Measurement

One aspect of developing FRs is to include a measure or a way to quantify the performance of achieving an

FR. The FRm is used to state the expected performance (including unit of measure) to indicate when an FR is

achieved. The designer must develop a test plan that ensures that the desired performance can be tested.

• "FRm" Performance Measurement tied to the Functional Requirements (as needed).A FRm measures

whether or not the design requirement is achieved.

• "PSm" Performance Measurement tied to the Physical Solutions (as needed). A PSm measures whether

or not the PS is implemented correctly.

5. Alternative solutions

When the designer chooses a PS to satisfy an FR, chances are, reasonable alternatives exist. These alterna-

tives can be presented following the format shown in Fig. 5. Measures for each of these alternatives can be

included if necessary. Based on the chosen PS, the resulting design may be different.This idea is explored in

more detail in Fig. 8.

Figure 4: Selection of FRm

Figure 5: Design relationship with alternative PSs

4

A System Design Language Primer

System Design Decomposition

The System Design Decomposition (or map) is a method to visually represent a design(system) by linking

the Physical Solutions (PSs) to their corresponding Functional Requirements (FRs). This method provides

an easy way to show coupling or interactions of how a set of PSs affects the achievement of a set of FRs at

a specific level of the design decomposition. To determine interactions, the designer must ask the question,

"does the choice of PSj affect the achievement of FRi within a branch at a specific level?"

Steps to the Decomposition Process

1. Map Customer Needs to Functional Requirements

2. Choose Physical Solutions to satisfy Functional Requirements

3. Define a performance measure for the FRs (abbreviated FRm) when applicable.

4. Define a performance measure for the PSs (abbreviated PSm) when applicable.

5. Check for interactions/coupling among the PSs and FRs at the current level. Coupling is found by asking

the question, "does the choice of PSj affect the achievement of FRi within a branch at a specific
level?" (See "Possible Design Cases" below for a better understanding of coupling.) Arrows are drawn

from physical solutions to functional requirements within a branch at a single level in order to indicate

coupling. NOTE: Level I is considered a one FR design which means coupling is not possible.

6. Decompose the design to the next level. NOTE: A design must be checked for interactions/coupling

before the design can be decomposed to the next level. The decomposition can only proceed if the

design is uncoupled or partially coupled at that level. In addition, a design can only be decomposed to

the next level if at least two or more FRs expand on the preceding higher level PS. Stop decomposing

when the PS expresses the design well enough that it can be implemented.

Figure 6: System Design Language
Figure 7: Design Decomposition Format

5

A System Design Language Primer

Decomposing Alternative Solutions

For each FR defined, there exists the possibility for alternative solutions. Based on the solution, the resulting

branches might vary. The way to represent these solutions with their differing branches is shown in Fig. 8.

Figure 8: Decomposition showing break down of alternative PSs

Motivation

The motivation to utilize a System Design Language is detailed in Fig. 9. Using a System Design Language

approach provides a means for understanding the implementation sequence of the physical solutions. This

approach results in eliminating the iterations that commonly occur when a design is coupled. Overall, the time

and expenses involved in the design phase are reduced.

Figure 9: Comparison between the traditional approach and the System Design Approach

6

A System Design Language Primer

Possible Design Cases

The possible design cases are listed below. Remember that a design is acceptable when it is either uncoupled

or path dependent. The four cases that are unacceptable are listed below. As stated before, interactions (X’s in

the below matrices) are determined by asking the question, "does the choice of PSj affect the achievement
of FRi within a branch at a specific level?" Equation 1 represents the design equation for the relationship

between FRs and PS within a branch at a specific level.

FRi =
[
Aij
]
PSj (1)

Where Aij is the design’s relationship matrix for a branch at a specific level.

Acceptable Cases

• Uncoupled[
FR1

FR2

]
=

[
X O

O X

][
PS1

PS2

]

• Path Dependent (Partially Coupled)[
FR1

FR2

]
=

[
X O

X X

][
PS1

PS2

]

Unacceptable Cases

=⇒ Related to Axiom 1: Maintain the in-

dependence of the functional requirements

(FRs).

1. Coupled[
FR1

FR2

]
=

[
X X

X X

][
PS1

PS2

]

2. Incomplete[
FR1

FR2

]
=

[
X O

O O

][
PS1

PS2

]

3. Redundant[
FR1

]
=

[
X O

X O

][
PS1

PS2

]

=⇒ Related to Axiom 2: Minimize the information content of the design.

4. Not Process Capable A design that is not process capable is one in which a chosen PS does not achieve

the corresponding FR. In other words, the Physical Solution did not achieve the Functional Requirement

Therefore, so it is said to be not process capable.

7

A System Design Language Primer

Implementation Sequence of Physical Solutions

A graphical representation of the implementation

sequence of the PSs for three possible design cases is

presented in the figure on the right.

In Fig.10, points A and B on the graphs represent

the desired level of achievement of FR1 and FR2. In

addition, point B has a combined higher level of FR1

and FR2 achievement, than A. In the case of a pre-

dictable (uncoupled) design, implementing PS1 affects

only FR1, and implementing PS2 affects only FR2.

Therefore, this design is the most robust in reference

to a change in PS1 or PS2, since PS1 only affects

the achievement of FR1 and likewise, PS2 only affects

FR2. This independence leads to the most robust

design and thus defines the least waste condition.

A path dependent design (Fig.11) is not ideal, but

it is considered to be an acceptable design. As the

name implies, a path must be followed during the PS

implementation process. PS1 is implemented first, as it

effects both FR1 and FR2. Once PS1 is implemented,

PS2 can be implemented without fear of affecting FR1.

Thus, when the implementation of PSs follows the

correct sequence, an acceptable design will be the

consequence.

With the coupled design (Fig.12), the result is consid-

ered to be an unacceptable design. The implementa-

tion sequence of the PSs represents a loop that may

never allow point B to be reached. In this design case,

PS1 affects both FR1 and FR2, and PS2 affects both

FR1 and FR2 causing the implementation of one PS to

alter the effectiveness of the other PS to meet its re-

quirement. Long implementation time and the risk of

never reaching target B with absolute certainty is the

consequence of a coupled design.

Figure 10: Predictable Design

Figure 11: Path Dependent Design

Figure 12: Coupled Design

8

A System Design Language Primer

Process Capability - A way to choose among alternatives.

Determining Process Capability is a way to determine whether alternative PS1a, PS1b... PS1n is the best

solution to FR1. The drawback is that it requires time to build a detailed model (i.e., Computational Fluid Dy-

namics (CFD), Finite Element Analysis (FEA), solid model, etc.)2 Process Capability can be determined for

each individual FR, or for the whole design. The process capability of an PS is used to determine the informa-

tion content associated with that particular PS.

Information Content (Ii) for a given FRi is defined in terms of the probability of success (Pi) of satisfying

FRi with PSi.2 Pi is calculated by finding the probability that the resulting outcome of a physical solution falls

within the Common Range (CR). The CR represents the overlapping area between the Design Range and the

System Range (SR).

Ii = log2
1

Pi
where Pi = P

(
CR
SR

)
thus Ii = log2

SR
CR

Figure 13: Sample Probability Density Function indicating the Common Range

Recall: log2(1) = 0, therefore, when the System Range is completely within the Design Range, the Information

Content is ZERO. This case is commonly referred to as a "robust" solution, meaning that the PS always meets

the FR. Please refer to Fig. 14 for an example of a robust design.

Figure 14: Robust design example (i.e., system range is within design range)

2Suh, Nam P. Complexity: Theory and Applications. Oxford: Oxford UP, 2005. Print.

9

A System Design Language Primer

Example of Using Axiom 2

Please refer to Fig. 8 for an example of alternative physicals solutions for one functional requirement (FR1

and PS1a,b,c). In addition, refer to Fig.13 for a graphical representation of the System Range and Design

Range for the alternative PSs. In the below calculations, data from Fig.15 is used to calculate the probability

and Information Content of the three proposed Physical Solutions. Eq.2 represents the probability density

function. Eq.3 represents the probability of an outcome in a specific range given a probability density function

(cumulative distribution function).

f(x, µ, σ) =
1

σ
√
2π
e

−1
2 (x−µσ)2 (2)

Where

e = Eulers’s number, σ = standard deviation, µ = mean

φ(z) =
1

σ
√
2π

∫ z

0

e
−1
2 (x−µσ)2dx (3)

PS1a:

f1a(x,−2, 1) =
1√
2π
e

−1
2 (x+2)2

φ1a =
1√
2π

∫ 2

0

e
−1
2 (x+2)2dx

φ1a = 0.0227P1a = 2.27%

I1a = log2
1

0.0227

I1a = 5.461

PS1b:

f1b(x, 0, 1) =
1√
2π
e

−x2
2

φ1b =
1√
2π

∫ 2

0

e
−x2
2 dx

φ1b = 0.4773

P1b = 47.73%

I1b = log2
1

0.4773

I1b = 1.067

PS1c:

f1c(x, 2, 2) =
1

2
√
2π
e

−1
2 (x−2

2)2

φ1c =
1

2
√
2π

∫ 2

0

e
−1
2 (x−2

2)2dx

φ1c = 0.3413

P1c = 34.13%

I1c = log2
1

0.3413

I1c = 1.551

Figure 15: Example of System Range and Design Range for Detailed FR⇐= PS in Fig. 4.

Conclusion: From the above calculations, PS1b has the least amount of information content. According to

Design Axiom 2, PS1b would be the chosen physical solution to meet FR1. PS1b is considered the most

capable process (solution) to meet the specified functional requirement.

10

A System Design Language Primer

Important System Design Errors to Avoid

1. Incorrect wording of Functional Requirements: A Functional Requirement begins with a Verb. Think

about an "action" or "transformation" that must occur.

2. Incorrect wording of Physical Solutions: A Physical Solution begins with a Noun. A PS is something

observable or quantifiable.

3. Unacceptable cases: Check for the four unacceptable cases (coupled, incomplete, redundant and not

process capable) prior to decomposing to the next level.

4. Inadequate branching: A design can only be decomposed to the next level if at least two or more FRs

expand on the preceding higher level PS.

5. Incorrect coupling expressed between levels: Arrows indicating coupling should not be seen branch-

ing from one level to another, or from one branch to another.

6. Incorrect coupling expressed between branches: Coupling is only expressed visually between PSs

and FRs within the same branch. Coupling elsewhere is already indicated by showing coupling at a

higher levels.

7. Incorrect branch Formating Arrows are drawn from the PS to the FR. Lines indicating the branches

should not be arrows.

8. Incorrect numbering of FRs and PSs: As a physical solution is decomposed into further functional

requirements, the numbering should follow the specified format. For example, PS1 is decomposed into

FR11, FR12...FR1n with their corresponding PSs of PS11, PS12...PS1n.

Figure 16: Common System Design Errors (See list above for details)

11

A System Design Language Primer

Application

The System Design Language expressed in this primer represents a tool that guides the design of a sys-

tem. The design decomposition provides the user with a map that indicates the order in which to implement

solutions and also an order in which to improve the system. In Fig.17, a simple design decomposition of a

manufacturing system is presented. The arrows that indicate coupling provide the flow of the implementation

and improvement process.

From this decomposition, the user can conclude things such as:

• "The quality may be perfect, but if the product design doesn’t meet the customers’ needs, the system

failed."

• "Implementing single piece flow (to improve delay reduction) should only occur after the product design is

correct, the quality standard is met, problems are identified and resolved, and the output is predictable."

Figure 17: System Design Decomposition indicating path dependency of a manufacturing system design.

12

